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Abstract Photo composition is one of the most
important factors in the aesthetics of photographs. As
a popular application, composition recommendation
for a photo focusing on a specific subject has been
ignored by recent deep-learning-based composition
recommendation approaches. In this paper, we propose
a subject-aware image composition recommendation
method, SAC-Net, which takes an RGB image and
a binary subject window mask as input, and returns
good compositions as crops containing the subject.
Our model first determines candidate scores for all
possible coarse cropping windows. The crops with
high candidate scores are selected and further refined
by regressing their corner points to generate the output
recommended cropping windows. The final scores
of the refined crops are predicted by a final score
regression module. Unlike existing methods that need
to preset several cropping windows, our network
is able to automatically regress cropping windows
with arbitrary aspect ratios and sizes. We propose
novel stability losses for maximizing smoothness
when changing cropping windows along with view
changes. Experimental results show that our method
outperforms state-of-the-art methods not only on
the subject-aware image composition recommendation
task, but also for general purpose composition
recommendation. We also have designed a multi-
stage labeling scheme so that a large amount of
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ranked pairs can be produced economically. We
use this scheme to propose the first subject-aware
composition dataset SACD, which contains 2777
images, and more than 5 million composition ranked
pairs. The SACD dataset is publicly available at
https://cg.cs.tsinghua.edu.cn/SACD/.
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1 Introduction

The rapid recent advances in digital technology make
it possible for the public to capture and produce
photos with comparable resolution and sharpness
to those taken by professional equipment. However,
most photos taken by novice users have poor aesthetic
quality with regard to composition due to their lack
of photographic skills. Researchers have investigated
computational approaches to suggest to ordinary
users the best crop of the original photo with
highest aesthetic quality. Although composition
evaluation of a given crop is a subjective process,
prior research has acknowledged that it follows some
objective laws which can be learned by deep neural
networks [1, 2]. Based on the learned implicit features
for composition evaluation, some deep architectures
have achieved great success at optimal cropping
window prediction [3, 4].

In photo composition theory and practice, it is
widely accepted that good photos generally satisfy
principles related to their main subject, such as
directing attention to the subject, and removing
objects that distract attention from the subject [5].
Moreover, ordinary users usually focus on specific
subjects when they take photos. A good composition
should put the main subjects in a place where they
are a dominant part of the image. However, existing
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Fig. 1 Examples of SAC-Net. (a) Cropping examples for single-subject images. Given an original image and a subject’s window mask, our
method can recommend a sub-image with high aesthetic value. (b) Cropping examples for multi-subject images. Different composition results
are obtained for different input subject window masks.

deep-learning-based composition recommendation
methods have not explicitly taken the main subject
of an image into consideration, and consequently
achieve unsatisfactory results, especially in scenes
containing multiple objects. To fill that gap in the
literature, we propose a subject-aware composition
recommendation method based on deep neural
networks. Our model takes an RGB image and
a subject window mask as input, and returns
cropping recommendations for good compositions
containing the subject. To support the training
of subject-aware models, we also propose a dataset
containing manually annotated cropping windows
whose composition qualities consider their main
subjects.

Many of the composition rules commonly used in
photography rely on the spatial layout of objects.
When evaluating the visual quality of photos, users
are very sensitive to even minor changes in spatial
information such as object positions in the photo and
spaces between objects and photo boundaries. Thus,
the accuracy of the predicted cropping windows is of
critical importance. However, most previous deep-
learning-based methods predict optimal cropping

windows by evaluating several pre-set windows on the
original photo [2–4, 6], which inevitably misses the
best cropping in many cases. To address this issue,
we are the first to propose a method that can directly
regress cropping windows with arbitrary positions and
sizes to give the optimal composition. We propose
a deep subject-aware composition recommendation
network (SAC-Net), which has two stages: (i) predict
candidate scores for all possible coarse cropping
windows, and (ii) recommend high score windows
by refining their corner points and regressing their
final scores.

In SAC-Net, the basic structure enabling the
generation of cropping windows with arbitrary
positions and sizes is inspired by the object detection
network, Faster R-CNN [7]. However, it is non-trivial
to directly apply an object detection network to
the composition task for the following fundamental
reason: unlike the object detection task in which
the output box just has an object label, the image
cropping task requires the model to have the ability
to provide an aesthetic score for predicted boxes.
Therefore, we introduce the following learning and
prediction paradigms for the task of subject-aware
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automatic cropping. Firstly, to find the optimal
crop among all possible windows, we adopt a
coarse candidate score map and carefully design loss
functions to allow the network to learn to evaluate
the aesthetic quality of different boxes, including
a continuity loss to maximize smoothness when
cropping windows undergo minor changes and a score
distance loss for learning the candidate score map.
Secondly, since the final aesthetic score depends on
the box size and position refined by regression, we
propose a different inference pipeline in which we
sequentially connect the sub-modules of the final box
regression and score evaluation during the inference
stage. Thirdly, we also improve the anchor selection
and feature map organization schemes to adapt
them to the cropping recommendation task. Our
experimental results show that the above paradigms
work well on the proposed interactive composition
task: our method significantly outperforms the state-
of-the-art methods and the alternatives of object
detection networks.

To support the training of our deep model, we need
a dataset containing manually annotated cropping
windows with their subject-aware composition
qualities. Since the existing datasets [2, 3] are labeled
without considering the main subjects of the original
photos, we have built the first large-scale subject-
aware image composition dataset (SACD). It is non-
trivial to properly label composition quality for a large
number of cropping windows at a reasonable cost.
Wei et al. [2] and Zeng et al. [3] selected some windows,
and asked artists to judge their composition quality
pair by pair. But their strategy could miss some good
cropping windows, which may confusion a network.
Also, it would be too expensive for artists to label
all possible cropping window pairs. Thus, we design
a multi-stage filtering annotation scheme enabling
annotators to effectively evaluate the composition
quality of all possible cropping windows with the
specified subject. A large number of ranked pairs can
be produced through our labeling process. Finally,
we label 2777 images and achieve more than 5 million
effective composition ranked pairs. Each image
contains at least 8 crops with good composition for
one subject.

Our main technical contributions are thus:
1. A subject-aware image composition recommen-

dation method, SAC-Net. Based on its two-stage

network architecture with carefully designed
learning paradigms, it is able to directly predict
accurate cropping windows without using any
pre-set windows. It substantially outperforms
the state-of-the-art methods in the proposed
interactive setting.

2. New learning schemes and losses to enable such
a two-stage network to provide proper cropping
windows and evaluate their aesthetic quality.

3. The first subject-aware composition dataset,
SACD, which contains 2777 images, more than
24,000 cropping windows, and more than 5
million composition ranked pairs.

2 Related work

2.1 Photo composition methods

Researchers have demonstrated that photo compo-
sition can be computationally evaluated and
improved. Earlier work mostly uses manually
designed feature extraction [8–14], composition
scoring functions [15–20] such as the amount of salient
content [21, 22], semi-automatic composition based
on eye tracking [23], training a composition evaluation
model such as a support vector machine (SVM) [24–
26], or matching to a well-composed template library
to optimize composition [27]. These methods have
achieved good results on simple pictures, but appear
less adaptable to more complex pictures.

In recent years, many deep-learning-based methods
[28–31] have been proposed to learn the aesthetic
value of pictures by training convolution neural
networks (CNN), and have achieved good results
on tasks related to photo composition. Ref. [28]
proposes a real-time composition recommendation
algorithm based on feature fitting using the user’s
favorite image set. Ref. [29] uses hand-crafted fea-
tures and SVMs to learn the composition quality of
cropping windows, and then exhaustively enumerates
windows and selects the one with the highest score
during use. A dataset containing 1000 images was
constructed in their work. Ref. [30] modifies the
CNN network structure and proposes layers such as
local contrast normalization, which can effectively
extract image quality features. Ref. [31] inputs
global and local information for classification. Later,
more sophisticated networks [32–35] were designed
to extract richer feature information from pictures.
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Ref. [32] proposes a deep multi-patch aggregation
(DMA) network, using only image patch blocks as
input. Ref. [33] explores more aesthetic attributes,
including the three-point line, whether the content
is interesting, etc. Ref. [34] proposes an adaptive
spatial pooling layer, which can handle input images
of different sizes and aspect ratios, thus avoiding the
problem of image distortion. Ref. [35] directly predicts
the regression box based on the target detection
framework. At the same time, it provides a dataset
with 28,064 images and 70,048 annotations. The
above methods are mostly proposed for assessing
aesthetic qualities of given images, and are not directly
applicable to recommend good cropping windows.

More recently, researchers have paid more attention
to cropping window prediction for good composition.
Refs. [36] and [37] first propose the use of deep
learning in the composition task with a two-stage
composition method consisting of attention box
prediction and aesthetic assessment, with achieved
good results. Ref. [38] performs saliency estimation
to generate thumbnails for stereoscopic photo pairs.
Ref. [1] assumes that the original image taken by
the photographer should score higher in composition
than the cropped image, when designing the ranking
loss for network training. Ref. [39] finds the best
cropping window by reinforcement learning. Ref. [40]
proposes a method based on comparison of the
qualities of two compositions, which is more accurate
than direct scoring. Wei et al. [2] first proposed use
of a comparison-based dataset to train the neural
networks. They proposed a view evaluation network
(VEN) and a view proposal network (VPN) network,
which greatly improves the performance. Based
on recent advances in deep neural networks, many
researchers in this field have worked on improving
network structure to provide better results [3, 4, 6, 41–
43]. Other researchers have also provided dataset
labeling schemes [3] and novel losses [44] to help
the learning process in composition recommendation
networks. In particular, Ref. [6] proposes the
composition- and saliency-aware ASM-Net, which
can learn the internal mechanism of composition to a
certain extent. Ref. [41] proposes a network that can
aesthetically score full-resolution images. Ref. [43]
proposes an end-to-end, composition recommendation
algorithm based on saliency maps. Ref. [45] proposes
to use distribution dissimilarity between high quality
images and cropped images to train the composition

model, instead of using training images with ground
truth cropping. This work also proposed a saliency
loss to make the model focus more on the salient
parts of the image, but does not let the user choose
the target subject. Ref. [46] collectes a dataset with
51k images, and 5 crops with different aspect ratios
are annotated for each image; its CNN model can
directly obtain composition results for 5 aspect ratios.
Ref. [47] uses a key composition map (KCM) to
encode the composition rules and built a network
that can explicitly apply the learned rules.

The previous methods have achieved good results
for the composition task, but the importance of
subjects is neglected in the above methods, which
sometimes leads to poorly located subjects.
Furthermore, even after choosing the best
composition containing the subject generated
by these methods, there may still be a chance that
other subjects are the visual center of the image,
while the selected subject is ignored; there is no use
of secondary objects to highlight the subject in a
harmonious composition.

In addition, the effectiveness and efficiency of the
previous methods [2–4] depend on the number of
preset cropping windows to some extent. Our sub-
module for generating candidate score maps can
provide a smaller number of valuable crops for later
accurate cropping refinement and score regression. It
significantly improves results and can provide state-
of-the-art performance on public datasets.

2.2 Photo composition datasets

Several datasets exist for evaluating composition
quality. Some [48–52] focus on the aesthetic score
of a single picture. These datasets enable researchers
to solve the composition recommendation problem
through deep learning. Ref. [48] collects online
peer-rated photos as a dataset, giving the average
score, number of downloads, and number of ratings.
Ref. [49] provides a dataset containing 17,613 images
with manually annotated aesthetic scores. Ref. [50]
presents the AVA database, which contains more
than 250,000 pictures with aesthetic scores. Ref. [51]
presents the FLMS dataset, where each picture
contains 10 hand-labeled excellent composition
frames. Ref. [52] proposes a dataset for selecting the
best photos amongst similar photos, and annotates
the partial order of aesthetic quality for each pair of
similar photos.
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In 2018, Wei et al. [2] proposed a comparison-
based composition (CPC) dataset, which contains
10,800 images, with 24 views for each image and
more than one million ranked pairs for different crops
of the same image. They show that comparison-
based composition datasets are more conducive to the
composition task. In 2019, Zeng et al. [3] presented a
grid-anchor-based image cropping dataset (GAICD).
They provide up to 90 fixed crops for each image and
score each crop. These datasets are both annotated
in terms of the entire picture, which does not fit the
subject-aware cropping recommendation task. Even
if cropping windows that do not contain the subject
are discarded, the remainder are not evaluated with
the consideration of the subject. They thus can not
be directly used in our task.

3 The SACD dataset

3.1 Overview

We present here a subject-aware composition
dataset (SACD) for the task of image cropping for
composition. It includes 2777 images and 5.2 million
ranked pairs. The labeled cropping windows all
have high aesthetic value with a certain focused
subject. Some example images of our dataset are
shown in Fig. 2. Rather than undirectedly finding

cropping windows with good composition for the
entire image, models trained on SACD can give
cropping recommendations for a specific subject in
the image.
3.2 Image collection

All of our images were collected from the
Microsoft Common Objects in Context (MS COCO)
dataset [53], which consists of images annotated with
object detection information. All MS COCO images
were collected from Flicker, a website for amateur
photographers to upload their photographs. We
use MS COCO images to build our dataset for two
reasons. Firstly, most Flicker images were taken in
real photographic environments, enabling the trained
model to work better in real applications. Secondly,
most were not taken by professionals, and leave large
room for composition improvement. We retain images
based on two rules: firstly, at least one subject should
be included in the image, and secondly, the subject
size should not be too large or too small.
3.3 Image annotation pipeline

After collecting eligible images from MS COCO, we
invited professional artists to label each image in a
comprehensive process. To ensure the diversity and
quality of the labeled results, our labeling process has
four stages.

Fig. 2 Subject-aware composition dataset (SACD) examples. (a) Images with multiple subjects. Original images are tagged A, and sub-images
labeled by professional artists for different subjects are tagged B1 and B2. (b) Images with a single subject, with tags A and B having the same
meaning as in (a).
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1. We assign a subject for each picture, such as a
person, a building, a bird, etc.; all annotations
should be focused on this subject. Subject
detection is done by Mask R-CNN [54]. We
divide the images into 5 × 5 image blocks on
average, and then select ij (2 6 i 6 5, 2 6 j 6
5) consecutive image blocks from top to bottom
and left to right as candidate images. In this
way, 100 sub-images are generated with different
aspect ratios and sizes, covering different regions
of the original image. At this stage, the annotator
looks through the 100 sub-images, and selects at
least 20 sub-images for the next stage.

2. The annotator now carefully goes through the
images from the previous stage, and selects at
least 16 of them for the next stage.

3. The annotator manually crops at least 8 images
from the previous stage, giving at least 8 ground
truth windows with good compositions for the
assigned subject. Although there may be a few
images where it is not easy to identify 8 good
cropped images due to a poor foreground or a
too-complex background, we only need relatively
good compositions to learn differences in quality
between cropping windows within each single
image. Therefore, we consider selecting 8 best
compositions from each image to provide suitable
training for our network. Figure 3 shows an
example image from SACD, with the 8 ground
truth composition windows for this image and a
specific subject.

4. In the last stage, the annotator selects the best of
the cropped images in the last stage, completing
the whole annotation process.

For each image, the whole process produces at
least 108 cropping windows B = {bi|0 6 i < n},

where n is the number of cropping windows. Each
image contains at least 8 good composition cropping
windows Bgood labeled by annotators, and Bgood =
{gi|0 6 i < m}, where m is the number of high-
quality composition cropping windows, and gi means
bgi is a good cropping window labeled by annotators.
We treat these good cropping windows as ground
truth. This process also produces at least 1799 ranked
pairs C = {(ci,1, ci,2)|0 6 i < k}, where (ci,1, ci,2)
means Bci,1 has better composition than Bci,2 , and
k is the number of ranked pairs.

SACD contains 2777 images, over 24,000 cropping
windows labeled by annotators, and over 5.2 million
ranked pairs. We divide the SACD dataset into
training, validation, and testing sets in the ratios
of 8 : 1 : 1.

We compare the annotation process of CPC,
GAICD, SACD, and a simple strategy in which
annotators directly mark the window with the best
composition. Outcomes are reported in Table 1. In
order to compare the advantages and disadvantages
of each annotation process, we count the number of
bounding boxes generated by each annotation process
for an image (Boxes), the number of ranked pairs
(Pairs), and the number of operations required to
annotate an image (Ops). We count one mouse
click as one operation and record the number of
ranked pairs that are produced by one operation
on average (Avg. pairs). Our annotation process
produces the most bounding boxes for each image,
and each operation produces more ranked pairs on
average. In addition, the annotation processes of
CPC and GAICD only allow comparison between a
few given boxes, but can not directly mark boxes
(MB), so lack flexibility and may cause the boxes
generated by the annotation process to fail to include

Fig. 3 Example ground truth windows in SACD. (a) An original image; the red box represents the assigned subject. (b) Eight ground truth
composition windows for this image, containing the assigned subject.
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Table 1 Comparison of annotation processes

Dataset Boxes Pairs Ops Avg. pairs MB CR

CPC 24 63 3 21 N —

GAICD 87 2958 108 27.4 N —

Mark 1 0 2 0 Y 256× 256

SACD 108 2643 53 49.9 Y 51× 51

the best composition in the image.
Directly marking the best composition bounding

box in an image is hard for the annotator, because
the candidate range (CR) is the entire image. In
the SACD annotation process, for a 256× 256 image,
annotators only need to select the upper left and lower
right corners of the bounding box from two 51× 51
patches respectively when labeling the boxes: the
number of candidates is much fewer than for previous
methods. Too many candidates will make it more
likely that annotators will miss the best composition
bounding box. Fewer candidates can provide more
objective and accurate annotation results, leading to
an easier annotation process and shorter annotation
time.

In summary, our 4-stage annotation process can
significantly reduce annotation errors and annotation
costs while generating a higher number of ranked
pairs.

4 SAC-Net

4.1 Outline

Our subject-aware image composition recommenda-
tion network (SAC-Net) is built upon the basic
structure of Faster R-CNN [7]. As Fig. 4 shows, SAC-
Net is a two-stage network, where we use candidate
anchors and perform ROIalign operations as in Faster
R-CNN. However, the composition task differs from
the object detection task. For example, each object
has only one ground-truth bounding box, but one
image may have multiple cropping windows with good
compositions. Furthermore, composition datasets
are annotated by ranking or pair-wisely comparison
of different cropping windows for an image, which
differs from object detection datasets. To enable
the network to predict accurate cropping windows
and adapt to the available training data, we made

Fig. 4 Inference pipeline of SAC-Net. For an input image, SSD is used to obtain the subject mask after the user selects the subject. The
concatenation of the mask and the image are then fed into SAC-Net. SAC-Net has three sub-modules. The candidate score map regression
module extracts a feature map and convolves it to obtain a candidate score map, in which the top 256 anchors with highest score are selected
and ROIaligned. The cropping window regression module obtains fine-tuning offsets for the 256 anchor boxes, which are ROIaligned again with
fine-tuned boxes on the feature map. The final score regression module computes the final composition score of each fine-tuned box. Top right:
example of fine-tuning an anchor box.
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several improvements to the network structure and
proposed new learning schemes. More particularly,
a new score continuity loss is used to ensure more
reasonable aesthetic score regression.

In this section, we first introduce the proposed
modules and the SAC-Net training process using
the SACD dataset which enable it to recommend
cropping windows, then introduce the composition
score continuity loss tailored to the composition task
to improve the performance of SAC-Net, and finally
introduce how SAC-Net works during inferencing
to predict the best cropping window for a specified
subject.

4.2 Training SAC-Net with SACD

The SAC-Net training process is shown in Fig. 5. It
has a backbone for feature extraction and three sub-
modules to allow effective training for the cropping
recommendation task. The candidate score map
regression module is used to generate candidate
composition cropping windows. The cropping window
regression module is used to fine-tune candidate
composition cropping windows. The final score
regression module is used to regress the composition
score of each fine-tuned cropping window. We now
consider how each module is trained. In each iteration,
the parameters of the backbone and the three sub-
modules are all updated to minimize the sum of losses
that is introduced below.

Backbone. Our backbone for feature extraction
feeds the concatenation of the image and the subject

mask into VGG16. In order to get a more detailed
feature map, we upsample the feature maps of the
last two stages of VGG16 to 32×32, and concatenate
the first 256 channels from each of the two stages into
a 32× 32× 512 tensor as our feature map f , which is
used as the input to the following three sub-modules.

Candidate score map regression. We use
32× 32× 16 anchors to represent possible cropping
windows. Each anchor ai,j,k (0 6 i, j 6 31, 0 6 k 6
15) represents a rectangular window centred at pixel
(8i + 4, 8j + 4), of size wkhk, where wk and hk are
calculated by the k-means [55] clustering method.
The candidate score map regression module aims to
give higher scores to anchors with better composition.
We use the ranked pair set C from the SACD dataset
to learn a score pi for each anchor ai. However, for
most anchors, there is no annotated cropping window
aligned to them. We thus use the annotated window
with the largest intersection-over-union (IoU) with
the anchor. We set qi = t if at has the largest IoU for
all anchors with bi. We use candidate score distance
loss LCSD following Ref. [2] to train this module:

LCSD = 1
k

k∑
i=1

max(1 + pqci,2
− pqci,1

, 0) (1)

where k is the number of ranked pairs, (ci,1, ci,2) is
a ranked pair from ranked pair set C, and qci,1 is a
cropping window with better composition than qci,2 .
We use this loss to supervise the prediction of the
candidate score map with a size of 32× 32× 16.

Cropping window regression. We use a set

Fig. 5 SAC-Net training pipeline. During training, the candidate score map, cropping window regression module, and final score regression
module calculate different losses. The candidate score map and final score regression module are supervised by ranked pairs; the cropping
window regression module is supervised by good composition cropping windows. Losses of each module not only affect that module, but also
the backbone.
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of good cropping windows Bgood from the SACD
dataset as ground truth to supervise the training of
the cropping window regression module. We feed
each anchor ai into it and get a refined cropping
window Wi. If a good cropping window bgj is in the
regression range of ai, we mark it as bgj ∈ Ω(ai). Its
refined window Wi should be close to the box bgj .
Here, we design a box regression loss to penalize the
distance between their corner points.

LBR = 1
M

m∑
j=1

∑
i|bgj

∈Ω(ai)
|Wi − bgj | (2)

where M is the number of (i, j) satisfying bgj ∈ Ω(ai),
and |Wi − bgj | represents the L1 distance between
the corners of the two boxes. The regression range
of an anchor is given in detail in the Electronic
Supplementary Materials (ESM).

Final score regression. We use cropping window
set B and ranked pair set C from the SACD dataset
to supervise the training of the final score regression
module in a pair-wise manner. We use each cropping
window in B to ROIalign the feature map and send
them to the final score regression module to get their
scores. Denoting the score of bi as fi, we define the
score distance loss LSD as Eq. (3):

LSD = 1
k

k∑
i=1

max(1 + fci,2 − fci,1 , 0) (3)

Combining the above losses to train SAC-Net allows
SAC-Net to learn how to generate final cropping
windows and evaluate their compositions:

Lcom = λSDLSD + λCSDLCSD + λBRLBR (4)
where λSD, λCSD, and λBR weight each loss.

4.3 Score continuity loss

We expect that the composition scores of cropping
windows should not differ much when their positions
and sizes are similar. Therefore, we propose a
score continuity loss to encourage smoothness of the
predicted scores in the candidate score map regression
module and the final score regression module. This
loss requires that the larger the IoU of two cropping
windows, the closer their composition scores should
be.

We now explain how we apply score continuity
losses to the two modules. For the candidate score
map regression module, we randomly generate s pairs
of anchors {(a1,0, a1,1), . . . , (as,0, as,1)}, and predict
their scores pai,0 and pai,1 . We define the candidate

score continuity loss LCSC as Eq. (5):

LCSC = 1
s

s∑
i=1

W (IoU(ai,0, ai,1))(pai,0 − pai,1)2 (5)

where W (x) = e−(x−1)2/(2σ), with σ = 0.05. It
penalizes large differences between similar anchors.

For the final score regression module, we use
a similar idea as for the candidate score map
regression module to improve the smoothness of the
results. We randomly generate s ranked pairs of
cropping windows {(u1,0, u1,1), . . . (us,0, us,1)}, and
predict their scores fui,0 and fui,1 . If a pair of
cropping windows are close to each other, we use the
final score continuity loss LSC to ensure neighboring
anchors have similar scores; it is defined as

LSC = 1
s

s∑
i=1

W (IoU(ui,0, ui,1))(fui,0 − fui,1)2 (6)

where W (x) = e−(x−1)2/(2σ). We normally set σ =
0.05.

Adding the score continuity loss to Eq. (4), our
final overall loss function is as Eq. (7):

L =λSDLSD + λCSDLCSD + λBRLBR+
λSCLSC + λCSCLCSC (7)

where λSC and λCSC weight each score continuity
loss.

4.4 Inferencing

We now introduce how the inferencing stage of SAC-
Net works to recommend cropping windows for a
specific subject. The workflow is shown in Fig. 4;
the ESM gives a more detailed description. Given an
input image, the user selects a subject that needs to be
composed with a single click. We then use single shot
detection (SSD) to get the bounding box mask of the
selected subject. We resize the concatenation of the
subject mask and the input image to a 256× 256× 4
tensor for input to SAC-Net.

Candidate score map regression module.
SAC-Net first obtains the feature map f from the
input through the backbone. We use 32 × 32 × 16
anchors to represent the possible cropping windows,
and feed f to a 1 × 1 convolutional layer to get a
32× 32× 16 candidate score map. The 256 anchor
boxes with highest scores are fed into the modules of
the second stage.

Cropping window regression. These anchor
boxes need to be refined according to the image
content to get the final cropping windows, since the
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anchors only provide coarse cropping parameters. We
use the anchor box to ROIalign the feature map f

and get a 7× 7× 512 tensor, and then use a 2-layer
full connection to regress the fine-tuned window as
shown in Fig. 4.

Final score regression module. Since the
candidate score map only provides the aesthetic score
of the coarse-level cropping windows, we further
predict accurate scores for the regressed windows.
Most two-stage detection frameworks such as Ref. [7]
regress the offset and the category label of the
bounding box simultaneously, since a small change
in bounding box position or size does not change
the semantic information for the box. However, in
the composition task, minor changes to cropping
windows affect their composition quality. Therefore,
SAC-Net first regresses the fine-tuned window, and
then ROIaligns the feature map with a fine-tuned
window to regress the final score. We finally sort all
the refined boxes according to their final composition
scores, and take the box with the highest score as the
output cropping window.

5 Experiments

5.1 Overview

We evaluated SAC-Net on the test set of SACD
dataset and conducted a user study to validate the
reliability of our method. The results show that
our model outperforms other existing methods by
a large margin. We also conducted comparisons
using existing datasets [51] with satisfactory results,
indicating that SAC-Net also works well for general
composition tasks without awareness of the main
subject. In addition, we evaluated our score
continuity, showing that it makes composition score
prediction more stable and continuous when moving
cropping windows, with potential benefits in real-time
composition guidance applications.

5.2 Implementation details

In order to avoid cropping windows from exceeding
image boundaries, we limited windows predicted by
the network to the image size during inferencing.
During training, loss weights were set to λSD = 1,
λCSD = 1, λBR = 10, λSC = 30, and λCSC = 30.
During inferencing, we use single shot detection
(SSD) [56] trained on the Pascal visual object classes
2007 (VOC2007) dataset [57] to generate the subject

window mask; it runs 45.5 frames per second (fps) so
satisfies the requirements of real-time applications. In
all experiments, our model is initialized with Faster
R-CNN [7] trained on the VOC2007 dataset and uses
a stochastic gradient descent (SGD) solver with a
batch size of 1. The learning rate is initially set to
0.0001 and multiplied by 0.1 every 200k iterations.
We trained our model on an NVIDIA GTX 1080Ti
GPU.

5.3 Evaluation metrics

We use intersection-over-union (IoU) and boundary
displacement (Disp.) as our evaluation metrics,
following previous works [2, 6]. Each image in the
SACD dataset has at least 8 good cropping windows
labeled by professional artists. When testing, we
calculate the IoU between the best cropping window
predicted by each method and each ground truth
window. We use the ground truth window with the
highest IoU with the output cropping window to
generate the final IoU and Disp. values. For all images
in the SACD dataset test set, we use the mean of
IoU and Disp. values to evaluate the performance
of each method. We also tested all methods on the
FLMS dataset [51] following the above strategy like
previous methods [2, 3].

Other previous works use SRCC and ACCK/N to
evaluate the prediction results [3]. However, they
require that each image has been annotated with
the composition scores of pre-set cropping windows
in their training data to allow the network to learn
to generate scores for each pre-set window. The
annotation pipeline of SACD does not include a stage
where users directly rate pre-set windows, nor does
our network generate final scores for pre-set windows.
Therefore, we do not use SRCC and ACCK/N to
evaluate the output of our networks.

5.4 Quantitative results

5.4.1 Results on the SACD dataset
Using the SACD dataset test set, we compared the
following methods which have released their model
and code: A2-RL [39], VFN [1], VEN [2], VPN [2],
LVRN [4], and GAIC [3]. Since our model uses
additional subject window mask information, for a
fair comparison, we perform a post-processing step
on these methods to discard their results that do not
include 50% of the area of the specified subject. SAC-
Net builds upon Faster R-CNN, a method specifically
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designed for object detection. We have made several
key changes to the network for the composition task.
To demonstrate the effectiveness of these changes,
we compare our model to the baseline model, Faster
R-CNN, on the image cropping task. We train the
baseline model by inputting an image and its subject
mask, and using bounding boxes of good cropping
windows to supervise the output. The highest score
in the output bounding boxes is used as its result.
We denote this model as FRCNN-m.

Results are shown in Table 2. Some outputs of
different methods are shown in Fig. 6. Our method
achieves the best performance in the subject-aware
composition task. Our model can generate cropping
windows with good compositions which are more
prominent and suitable for different types of subjects.
It benefits from our proposed SACD dataset, novel

Table 2 Results on the SACD dataset test set

Method IoU(↑) Disp.(↓)

A2-RL [39] 0.6674 0.0887

VFN [1] 0.6690 0.0887

VPN [2] 0.7036 0.0699

VEN [2] 0.6911 0.0765

LVRN [4] 0.6962 0.0765

GAIC [3] 0.7124 0.0696

FRCNN-m [7] 0.7306 0.0587

SAC-Net (ours) 0.7665 0.0491

network structure, and dedicated learning paradigms
for the subject-aware composition task.

In addition, our network design considers real-world
usage of the cropping recommendation method, e.g.,

Fig. 6 Results using the SACD dataset test set. We compare our method to 7 other methods (c)–(i). Red box: best cropping window for a
method. Yellow box: one of the 8 ground truth windows, with highest IoU to the red box.
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automatic composition recommendation in the view-
finder of a digital camera or smart phone. The
two score regression sub-modules are designed to
obtain similar results for similar cropping windows,
in order to provide better spatial stability of predicted
scores when providing guidance for users pursuing
good compositions. Figure 7 illustrates the score
continuity test result. We fix a cropping window in
the center of one image, and move the window in
different directions. We plot predicted score curves
for the moving cropping window using our method,
VFV, VEN, GAIC, and LVRN; VPN and A2-RL
are excluded because they cannot predict scores of
given cropping boxes. We calculate the average
discrete curvature of each curve, as report them
in Table 3. The result shows that our method
gives more stable scores when the camera is moving,
so our method provides more stable cropping windows.
Please see the video in the ESM for a visual
comparison.
5.4.2 User study on single object images
To further evaluate the effectiveness of our proposed
method, we conducted a user study with 76
participants aged from 17 to 35, among whom were
21 professional photographers and 55 novice users.

Table 3 Mean discrete curvature of plots in Fig. 7

Method X dir.(↓) Y dir.(↓) XY dir.(↓)

VFN [1] 0.9056 0.4372 1.2840
VEN [2] 0.1170 0.1668 0.2807
GAIC [3] 0.0288 0.0386 0.0432
LRVN [4] 0.0041 0.0036 0.0156

SAC-Net 0.0027 0.0031 0.0093

We randomly selected 30 pictures from the SACD
dataset test set, and generated the best cropping
window using 7 different methods. We then showed
the original photo, its subject, and 7 sub-images
cropped by different methods for each input image
to participants. Participants were asked to select the
sub-image with the highest aesthetic quality with
respect to the specified subject. Considering that
different methods may generate similar results, we
allow participants to choose from 1 to 3 sub-images.
We compared our method to VPN, GAIC, VEN,
A2-RL, LVRN, and VFN. We obtained a total of 76
valid results, and calculated the average votes for each
method, which are plotted in Fig. 8. Most professional
and novice users prefer the results cropped by our
method when considering the given subject. It shows
the effectiveness of our network and the reliability of
our dataset. More details can be found in the ESM.
5.4.3 User study on multiple objects images
When there are multiple objects in a scene, users
may expect different compositions when focusing
on different main subjects. To validate the above
hypothesis and test the capability of SAC-Net when
predicting compositions for multi-object images, we
conducted a second user study. We randomly selected
6 images containing at least two objects from both
CPC and SACD test sets to give a total of 12 images
with 24 subjects. We then generated the 2 cropping
windows for each image with 2 different specified main
subjects, using 7 different methods (SAC-Net, VPN,
GAIC, VEN, A2-RL, LVRN, and VFN). For methods
other than SAC-Net we performed a post-processing
step to discard results that did not include 50% of
the area of the specified subject. We recruited 37

Fig. 7 Score continuity test. We fix a cropping window in the center of one image, expand the window in different directions, and plot the
score curve predicted by five different methods. x-axis: number of pixels the cropping window has expanded in the corresponding direction.
y-axis: score of the current windows.
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Fig. 8 User study results for single-object images using the SACD
dataset test set.

participants aged from 18 to 41, among whom were 12
professional photographers and 25 novice users. We
showed 24 sets of images to all participants; each set
contained 7 images cropped by 7 different methods for
a specified subject. Participants were asked to select
the cropped image with the best aesthetic quality
with respect to the specified subject from each set of
cropped images. Participants were allowed to choose
at most 3 images from each set. Average votes for
each method are shown in Fig. 9.

The results demonstrate that our method has a
greater advantage for scenes with multiple objects
than for scenes with a single object (votes shown in
Fig. 8). As shown in Fig. 10, methods for predicting
general compositions have difficulty in producing a
good composition targeting a specific subject, even
if the generated composition contains the specified
subject. SAC-Net takes the position and size of the
main subject into account when generating the final
cropping window, which results in good aesthetic
quality even in such complex scenes. More details of
this user study can be found in the ESM.

Fig. 9 User study result on multiple-object images using the SACD
and CPC dataset test sets.

Fig. 10 Sample images used in the second user study. (a) Input
image with multiple objects; red box indicates the specified subject.
(b) Cropping results of SAC-Net. (c) Cropping results of VPN, an
example of methods predicting general compositions.

5.4.4 Results on the FLMS dataset
In order to verify the generality of our proposed
network architecture for composition recommenda-
tion, we also compared our method to the others
on the FLMS dataset [51], which has 500 images
and is widely used in the general composition task.
Since FLMS is a test set without subjects, for a fair
comparison, we used the CPC [2] dataset to train
our model, removed the subject mask channel from
the input, and weights of all losses during training
were set to λSD = 1, λCSD = 1, λBR = 10, λSC = 3,
and λCSC = 3. We ran the k-means algorithm to
get anchor sizes as described in Section 4.2. We
compared the following methods to ours: A2-RL [39],
VFN [1], VEN [2], VPN [2], LVRN [4], GAIC [3],
ASM-Net [6], and Faster R-CNN [7] trained on CPC,
denoted as FRCNN-m. The results are shown in
Table 4. Although our method is designed for subject-
aware composition, it can still achieve state-of-the-
art performance on the general composition task,
showing that our proposed method augments the
existing literature.
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Table 4 Results on FLMS dataset

Method IoU(↑) Disp.(↓)

A2-RL [39] 0.8136 0.0472
VFN [1] 0.7371 0.0615
VEN [2] 0.8126 0.0438
VPN [2] 0.8233 0.0399
LVRN [4] 0.8436 0.0365
GAIC [3] 0.8025 0.0470
ASM-Net [6] 0.8486 0.0390
FRCNN-m [7] 0.8125 0.0757

SAC-Net (ours) 0.8551 0.0333

5.4.5 Speed
We further compared the efficiency of our method to
A2-RL, VFN, VEN, VPN, LVRN, GAIC, and ASM-
Net; results in terms of frames per second are shown
in Table 5, indicating that our method is faster than
most algorithms. Where it is slightly slower, our
method gives much better results. The result for
SSD+SAC-Net shows the efficiency of our method
with SSD used for preprocessing. Note that even
when taking the time for processing user input into
consideration, our method can still meet the real-
time requirements. In addition, as Fig. 11 shows, our
method is able to balance speed and quality to meet
different needs by simply adjusting a parameter.

Table 5 Efficiency evaluation

Method fps(↑)

LVRN [4] 125
GAIC [3] 125
VPN [2] 75
VEN [2] 0.2
A2-RL [39] 4.1
VFN [1] 0.5

SAC-Net (ours) 100
SSD+SAC-Net 31.3

Fig. 11 Varying use of candidate score map. We show IoU and fps
values using cropping windows whose scores in the candidate score
map are in the top 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, all.

5.4.6 Robustness to subject mask change
SAC-Net obtains the subject information by using
SSD to generate a subject bounding box mask. In
order to test the robustness of SAC-Net to changes
in this mask, we conducted an experiment using
inaccurate bounding boxes as input to SAC-Net. We
replaced the subject bounding box detected by SSD
with a randomly perturbed bounding box using the
SACD test set. We experimented with constraints
that the IoU of the randomly perturbed bounding
boxes and the original bounding boxes should be not
less than x% for varying x. The prediction results are
shown in Table 6. When the input mask is relatively
accurate, i.e., the IoU of the random box and the
original box is greater than 80%, there is almost
no effect on the result (≈ 0.2%). When there are
moderate errors, i.e., the IoU is greater than 50%,
there is a small impact on the result (≈ 0.6%). But
if detection completely fails, there is a big impact on
the result (≈ 11.2%).

In Fig. 12, we show some of the cropping results
of SAC-Net without subject mask input to simulate
subject detection failure. We see that our network
can still generate acceptable composition results in
such cases.

This experiment shows that SAC-Net has good
robustness to possible errors in the automatically
generated subject masks.

5.5 Ablation experiment

We performed extensive ablation studies on SAC-Net
to evaluate the importance of each component, losses,
and learning schemes in our method. We tested the
model without the candidate score map regression
module, cropping window regression module, and
final score regression module to provide a better
understanding of the contribution of each sub-module.
All experiments were conducted on the SACD
test set.

Table 6 Subject mask perturbation results

Bounding box IOU IoU(↑) Disp.(↓)

0% 0.6550 0.0859
50% 0.7603 0.0509
80% 0.7650 0.0497
90% 0.7659 0.0492
95% 0.7661 0.0492

100% 0.7665 0.0491
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Fig. 12 Cropping results from SAC-Net without subject mask input. In each pair, the input image is on the left and the cropped result on
the right.

5.5.1 Score continuity loss
In order to verify effectiveness of the score continuity
loss, we conducted an experiment with λSC = 0 and
λCSC = 0. This model is denoted as w/o-SC. As
reported in Table 7, the score continuity loss not
only contributes to the final stability in potential
practical applications, but also benefits the cropping
window prediction, as it further facilitates score
learning by propagating good composition scores to
its neighboring anchors and cropping windows.
5.5.2 Candidate score map regression module

(CSMRM)
We sent all anchors directly to the cropping window
regression module and final score regression module

Table 7 Ablation results

Method IoU(↑) Disp.(↓)

w/o-CWRM-L 0.7125 0.0736
w/o-CWRM-M 0.7400 0.0582
w/o-CWRM-S 0.5859 0.0714
w/o-FSRM 0.7082 0.0584
w/o-SC 0.7097 0.0622
w/-parallel 0.7239 0.0636
w/o-cluster 0.7320 0.0609
w/o-SM 0.7456 0.0563
w/-LL 0.7512 0.0505

SAC-Net 0.7665 0.0491

without selecting good candidates using CSMRM.
This model is denoted as SAC-Net-all. Results are
shown in Fig. 11. Since there is no candidate score
to filter out inferior cropping windows, the final IoUs
decrease to some extent, and the speed also drops
dramatically.
5.5.3 Cropping window regression module (CWRM)
We removed the cropping window regression
module, and directly return the largest/mid/smallest
window within the anchor regression range to
feed the final score regression module, which
are denoted w/o-CWRM-L, w/o-CWRM-M, w/o-
CWRM-S respectively. The results are reported in
Table 7. It can be seen that the window cropping
regression module gives SAC-Net better flexibility to
adapt to different types of scenes and objects, and
hence helps the full model to obtain better cropping
windows.
5.5.4 Final score regression module (FSRM)
In order to validate the importance of the score
regression module, we directly used scores from the
candidate score map after anchor refinement. This
model is denoted as w/o-FSRM. As reported in
Table 7, there is a large performance drop compared
to the full model. It shows that using the estimated
final scores of the refined cropping windows can
provide much better composition recommendations.
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5.5.5 Network structure
In order to enhance the capability of SAC-Net in the
composition task, we also make some improvements
on the basic network structure compared to Faster
R-CNN, including serial score regression, anchor
determination with clustering, and feature map
expansion. We conducted experiments to verify the
effectiveness of these strategies.

Since minor changes to the bounding box in the
composition task can affect the composition score of the
regressed box, we arranged the box regression module
and the score regression module sequentially, instead of
running them in parallel as in the common two-stage
object detection task [7]. In Table 7, we report the
performance when the two modules run in parallel,
which is denoted as w/-parallel. The results show
that using the two modules sequentially makes better
predictions of composition scores of cropping windows.

In order to verify the effectiveness of using k-
means to determine anchors, we compared the
performance of the network using anchors with
manually determined sizes. We make the height
and width of each anchor linearly distributed, with
wk={108, 160, 212, 264, 108, 160, 212, 264, 108,
160, 212, 264, 108, 160, 212, 264}, hk={108, 108,
108, 108, 160, 160, 160, 160, 212, 212, 212, 212,
264, 264, 264, 264}. We denote the model with the
above anchor configuration as w/o-cluster. As shown
in Table 7, using a clustering method to determine
the anchors can evenly distribute potential good
composition bounding boxes in the regression range
of different anchors, so as to share the regression
burden of different anchors, which helps the network
to obtain better results.

We also tried different strategies for feature map
generation. Instead of using the feature maps from
the last two stages of VGG16, we trained a model
that directly ROIaligns the final output of VGG16 to
a 32×32×512 tensor as the feature map. This model
is denoted as w/-LL. Results are shown in Table 7.
The comparison shows that our strategy obtains more
detailed information and provides better results by
concatenating the last two feature maps of VGG16.
5.5.6 Subject mask
In order to see whether our network learns the
composition information with respect to the given
subject, we trained our model without the subject
mask, denoted w/o-SM. The results reported in
Table 7 demonstrate the capability of our network

to incorporating subject information from the
subject mask channel to give better composition
recommendations for specified subjects.
5.5.7 Multiple objects
We mainly target subject-aware composition
recommendation, and provide an annotated database
and a deep model for composition recommendation
for a single subject. Since our network overall learns
how to obtain a good cropping window taking into
account the content in the mask, some general factors
leading to good compositions are learned regardless
of the number of masked objects. Thus, we further
tested the generalizability of our deep model to
cope with photos of multiple objects. We only need
to combine the masks of multiple objects as the
input mask to achieve the recommended composition
for multiple objects. The predicted results of our
trained networks using different subject masks are
shown in Fig. 14(c), and indicate that our network
can generate different cropping windows adapted to
different subject sets.
5.6 Further discussion

We also evaluated the effect of the number of
candidate cropping windows. After obtaining the
candidate score map, we fed all top 2n(n = 10, . . . , 1)
anchors with highest scores to the next sub-modules
when testing. The results are shown in Fig. 11. It
shows that the candidate score map can speed up
the inference process and filter out unreasonable
cropping windows for subsequent steps, which is
beneficial to the cropping window regression and final
score regression modules. The number of candidate
cropping windows can be used as a parameter to
balance speed and quality. Figure 11 shows that SAC-
Net-top-256 as our final model is a good compromise.

In Fig. 13, we show some cases for which SAC-Net
failed when testing. Although the composition is not
bad for a single subject in those cases, if the network
could understand the interaction between the main
subject and other objects in the image, it would be
more likely to produce higher-quality composition
results. We will investigate the effects of interaction
between multiple objects in our future research.

We consider that our solution is suitable for
applications where it is easy for users to provide
the position of the main subject in the current
scene. For example, our method could provide
a viewfinder assistant for a smart phone camera
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Fig. 13 Failures of SAC-Net on the SACD test set.

application where users can simply tap the subject’s
position; it could also be used as an auto-cropping
tool in image editing software to help novice users to
achieve aesthetically pleasing photos as output. Our
method can automatically provide the composition
for a subject in the above scenarios. The requirement

of the existence of a main subject naturally leads to
a limitation that landscape pictures with no obvious
subject are not handled very well.

Some recommendation results for various situations
are shown in Fig. 14 and more results can be seen in
the ESM.

Fig. 14 Further results in different situations. (a, b) Cropping results for a single subject from the SACD dataset and wild images respectively.
(c) Results for multiple objects. (d) Results for panoramic images.
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6 Conclusions

We have proposed a novel deep model, SAC-
Net, and built a new dataset, SACD, for subject-
aware composition recommendation. Our model
outperforms existing methods on the subject-aware
image cropping task, and achieves state-of-the-art
performance on the general composition task. Our
experiments show that our model is capable of
providing good compositions according to the type
of subject, and has potential utility in practical
applications. Our method is complementary to the
literature on automatic cropping for aesthetics. In
future, we hope to incorporate semantic relationships
between objects, to recommend cropping windows
more intelligently. We also intend to use our
proposed labeling scheme to collect datasets multiple
object composition recommendation and, and hope
to develop better deep models to predict crops with
good compositions for multiple objects.
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