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Figure 1: We propose a novel redirected walking method based on historical user walking data. We process the raw user trajectories
into a heat map and build a graph-based discrete representation. In the left image, the green balls are the waypoints of the preset
simulation paths. Note that although the waypoints are not included in the raw data, they can be used to compare with the waypoints
calculated from the heat map. By combining the compact user walking data with RDW controller, we develop a more effective
redirected walking algorithm.

ABSTRACT

With redirected walking (RDW) technology, people can explore
large virtual worlds in smaller physical spaces. RDW controls the
trajectory of the user’s walking in the physical space through subtle
adjustments, so as to minimize the collision between the user and
the physical space. Previous predictive algorithms place constraints
on the user’s path according to the spatial layouts of the virtual envi-
ronment and work well when applicable, while reactive algorithms
are more general for scenarios involving free exploration or uncon-
strained movements. However, even in relatively free environments,
we can predict the user’s walking to a certain extent by analyzing the
user’s historical walking data, which can help the decision-making
of reactive algorithms. This paper proposes a novel RDW method
that improves the effect of real-time unrestricted RDW by analyzing
and utilizing the user’s historical walking data. In this method, the
physical space is discretized by considering the user’s location and
orientation in the physical space. Using the weighted directed graph
obtained from the user’s historical walking data, we dynamically
update the scores of different reachable poses in the physical space
during the user’s walking. We rank the scores and choose the opti-
mal target position and orientation to guide the user to the best pose.
Since simulation experiments have been shown to be effective in
many previous RDW studies, we also provide a method to simulate
user walking trajectories and generate a dataset. Experiments show
that our method outperforms multiple state-of-the-art methods in
various environments of different sizes and spatial layouts.
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1 INTRODUCTION

The grand aim of Immersive Virtual Environments (IVE) research
is to synthesize sensory information that leads to a high degree of
perceived realism of virtual environments. Locomotion, as a funda-
mental and universal activity performed during interaction within
IVEs, will be a frequent everyday activity for more and more people
in the coming era of the Metaverse. Early IVE researches performed
locomotion with interaction devices, such as joysticks, wands, and
mouses. Nevertheless, using these devices to initiate self-motion in
virtual environments (VE) provides unnatural input and feedback to
the body. Traveling in IVEs by real walking has been considered the
most intuitive way to drive virtual motion and improve the sense of
presence [25] [31]. To map the often larger virtual world to the phys-
ical space, stand-still devices were developed to create a partially
realistic walking sensation. However, the haptics of walking in VE
is still not fully resolved due to the lack of realism compared to real
walking. For maintaining an illusion of walking freely in VE at a low
cost, Redirection Walking (RDW) [24] compresses a large virtual
world into a significantly smaller physical space, allowing the user
to experience a more realistic walk with imperceptible redirection
or speed changes in their physical environments (PE).

Despite all the recent advancements, effectively redirecting walk-
ing for VR environments with different spatial layouts and com-
plexities still remains challenging due to the following reasons: 1.
The infinite possibilities of potential paths to redirect users. Since
the extremely large search space brings a huge difficulty in finding
the globally optimal redirection solution, reactive methods were
proposed to guide users with manually designed constraints, such
as physical targets (Steer-to-Center and Steer-to-Multiple-Targets)
or a specific circular trajectory (Steer-to-Orbit). However, these
methods perform worse than the predictive methods when possible
future movements of users can be estimated [18,40], as the manually
given rules are not guaranteed to make the best decision when guid-
ing users. 2. The limited generalizability of the existing methods
across different VR scenes and physical spaces. Although previous
predictive methods work well in their specific environments, their
strong assumption on the spatial layouts makes their methods hard
to generalize to other scenes.



In this research, we aim to fill that gap by developing a redirection
solution that is applicable to various environments and can provide
high-quality free walking based on predicting the properties of the fu-
ture paths. We found that the historical walking data of users in a VE
can be a reliable and accessible source for future path analysis and
prediction, which is general for all environments regardless of their
spatial layouts and complexities. More importantly, the historical
walking data for different environments provide essential guidance
for the prediction method to fit various environment structures.

We are the first to investigate how to represent and analyze the
historical walking data for future walking redirection. We use a
discretized representation of the physical space to encode the user
poses, including their position and orientation, enabling path estima-
tion. We evaluate all the discrete physical poses and assign a score
to represent the priority of each pose by its reachable pose number
and the longest distance it could reach. To reduce the errors from
discretization, we guide the users to the discrete poses to the greatest
extent. We also make a similar discretization for the virtual space.
To properly analyze users’ historical walking data, irrelevant infor-
mation, such as individual walking habits, needs to be eliminated.
We expand each recorded virtual walking route to a band to cover
more nearby poses. Then all the historical walking routes can be
summarized in a walking heatmap in the virtual space. Furthermore,
a weighted directed graph is built up using the poses covered by the
heatmap to help the guidance of users.

Our RDW algorithm is built upon the weighted graph representing
the historical walking data. Once a user finishes turning or resetting,
we will find a target pose in physical space and guide the user to it
by considering the distances and weights of the poses and whether
they could cause resets. When the user has to reset on the way from
their current pose to the next pose, we increase the weights of these
reachable poses. When a reset can be avoided if the user walks to
some reachable poses when arriving at the virtual destination, we
will increase the weights of those poses. At the same time, we also
adopt a different reset strategy compared with previous approaches.
Common reset strategies, such as reset-to-center (R2C) and two-
one-turn, are versatile but not necessarily effective because they
can not make further optimization according to the physical layout.
Instead, our algorithm considers all the orientations of the current
boundary position and turns the user to the best orientation when a
reset happens. It also reduces the interruptions in the user’s walking
experience.

This paper presents the following contributions to the RDW re-
search:

• A novel RDW algorithm based on the analysis of users’ histor-
ical walking data. Our algorithm has a better generalizability
than predictive algorithms and is more effective than reactive
algorithms in various VR applications where users can freely
explore.

• A dataset containing simulated user’s historical walking data.

• An algorithm to convert the user’s historical walking data into a
walking heatmap and encode it into a weighted directed graph.

• A user study and extensive simulation experiments comparing
the performance of our RDW algorithm with other state-of-the-
art RDW algorithms.

2 RELATED WORK

Razzaque [24] is generally credited as the person who built the RDW
technology. When the magnitude of the conflict does not exceed the
perceptual threshold, human vision dominates vestibular sensation,
thereby enabling the user to be unknowingly redirected to walk
along a virtual path separate from their physical path. In Razzaque’s
method, the operation of inducing the user’s straight path in the

virtual scene into a circular arc path by rotating the virtual scene is
called curvature gain. The operation of changing the user’s rotation
angle in the real space by rotating the virtual scene is called rotation
gain. When the user walks in the virtual scene, panning the virtual
scene along the user’s movement direction or the opposite direction
can make him not aware that the distance he walks in the real space
has changed. This operation is called translation gain [12].

2.1 Perceptual Thresholds

For the authenticity of the user experience, redirected walking needs
to limit the operation of the system to situations where the user
does not perceive abnormality. Steinicke et al. [27] showed that in
order not to be detected by ordinary users, the rotation gain needs to
be greater than 0.67 and less than 1.24, the translation gain needs
to be greater than 0.86 and less than 1.26, and the curvature gain
needs to have a radius of at least 22.03 meters. Waller et al. [32]
have achieved a turning radius of 7.5 meters, but the detection
rate is low. The study by Grechkin et al. [8] found that data from
both experiments by the constant stimulus method and the Green’s
maximum likelihood procedure did not show that the curvature gain
detection threshold was affected by the presence of translation gain.
Neth et al. [19] demonstrated a correlation between a user’s physical
speed and curvature gain detection, i.e., as users walked faster, their
curvature gain detection threshold was lower. Hutton et al. [11]
focused on individual differences in tolerance and susceptibility
to redirection and proposed a method to quickly and accurately
calculate the rotation gain threshold for a single user. Williams et al.
[34] demonstrated that perception threshold is influenced by gender,
visual field, and confounding factors, finding a strong correlation
between simulator disease score and threshold gain. There has also
been some work trying to apply rotation and curvature gains beyond
the usual perceptual limits by introducing rotation during blinking
or saccade movements [14, 20, 29].

2.2 Predictive RDW

Predictive algorithms incorporate the user’s future motion predic-
tions into redirection. Zmuda et al. [40] identified collision-free
paths by using the shape of the tracked area and a map of obstacles
and multi-step probabilistic predictions of the user’s virtual path
through a known virtual environment. Nescher et al. [18] proposed
a method called Model Predictive Controlled Redirection Technique
(MPCRed), which is able to dynamically select suitable redirection
techniques and control parameters such as their strength. This study
formulates the problem of guiding users in small physical rooms
using redirection techniques as an optimal control problem. This al-
lowed them to apply efficient probabilistic programming algorithms
to maximize the free walking experience. Their proposed algorithm
uses a map of the virtual environment to continuously determine
the best redirection technique that must be applied next. Recently
Dong et al. [7] proposed a new strategy for multi-user redirected
walking using a dynamic artificial potential field, which generates
repulsive forces to guide users away from obstacles and other users,
and uses gravity to guide users to open or unobstructed spaces. In
this approach, users are not only repelled by walls, but also by other
users and their future states. Where predictive algorithms are ap-
plicable, they have been shown to significantly outperform reactive
algorithms.

2.3 Reactive RDW

Razzaque et al. [24] proposed three steering strategy algorithms:
Steer-to-Center (S2C); Steer-to-Orbit (S2O); Steer-to-Multiple-
Targets (S2MT). These three algorithms respectively guide the user
to the center of the real space by using the redirection gain operation,
guide the user’s walking trajectory into a specific circular trajectory,
and guide the user to multiple designated target points in the real



space in turn. Hodgson et al. [9] extended the Steer-to-Multiple-
Targets algorithm to the Steer-to-Mutiple+Center algorithm, and
designed experiments to compare the pros and cons of the four
guided strategy algorithms. They found that, in their case, the S2C
algorithm performed best among the four algorithms. In another
experiment by Hodgson et al. [10], the virtual scene where the user
roams is a road scene, and the roaming direction is constrained to a
certain extent. In this case, the S2O algorithm performs better than
the S2C.

Azmandian et al. [1] studied how the total area and size of the
tracking space affects the performance of S2C and S2O algorithms.
Chen et al. [4] described an RDW algorithm for non-ideal physical
environments. Lee et al. [15] proposed Steer-to-Optimal-Target
(S2OT) for redirected walking. It estimates the optimal steering
target through reinforcement learning, specifically using a technique
called Deep Q-Learning. There were also works by Chang et al. [3]
and Strauss et al. [28] using reinforcement learning to redirect users.
Thomas et al. [30] proposed an artificial potential field based RDW
method (APF). Bachmann et al. [2] made an APF method that allows
multiple users to walk in the same tracking space. Messinger et
al. [17] improved the APF method for irregular tracking spaces. Xu
et al. [37] quantitatively redirected the user to discrete best-reachable
poses by simultaneously considering steering and resetting.

In addition to reducing physical collisions by only considering
the layout of the PE, some recent RDW methods also focus on
improving the user experience in the VE. Recently Chen et al. [5]
and Wang et al. [33] proposed to use reinforcement learning to align
the virtual environment with the physical environment in order to
provide users with passive haptics while walking. Xu et al. [36]
proposed a point-of-interest-aware RDW strategy to guarantee that
users will not trigger resets at important locations in the VE while
reducing the number of resets. Recently an RDW solution for cloud-
based multiplayer VR scenarios has also been proposed [35], aiming
to ensure that remote users located in different PEs have the same
number of resets for fairer online gaming and reduce the number of
resets for all users.

2.4 Reset Strategy

Even with RDW techniques, collision-free motion in large virtual en-
vironments cannot be guaranteed when the tracking area is small [19].
For example, a user may perform a turn towards a wall while ap-
proaching that wall. How to handle situations where users encounter
physical boundaries needs to be considered. Williams et al. [26]
proposed several methods for resetting users and examine users’
perceptions of each reset technique. The results show the pros and
cons of the freeze backup, freeze turn, and two-turn methods. Some
methods [19, 21, 22] achieve the function of reset by diverting the
user’s attention, such as the use of visual and auditory distractors.
Cirio et al. [6] presented the user with a visual barrier to indicate
where the boundaries are.

There are some methods that not only consider the user’s reset
experience, but also consider the impact of the reset orientation
on the user’s next walking. Reset to center (R2C) is a general
method that always resets the user’s orientation to the center of
the physical space. Thomas et al. [30] introduced three improved
reset strategies, including reset to gradient (R2G), modified reset to
center (MR2C), and step-forward reset to gradient (SFR2G), which
addressed the case where the R2C strategy fails when an obstacle is
located between the user and the center of the physical environment.
Zhang et al. [38] proposed a method using an optimization technique
to calculate the optimal reset direction of each obstacle boundary
endpoint. They also proposed an one-step out-of-place resetting
strategy, which avoids subsequent resets by introducing appropriate
displacements during the reset process [39].

3 METHOD

The historical walking data is valuable for decision-making in differ-
ent stages of our redirection system. Because there is no available
system that records detailed walking data of users, we generate
historical walking data of users through simulation experiments.
However, the walking data could be messy and noisy, which need to
be further processed to get a more compact and intuitive representa-
tion. Here, a weighted directed graph is employed to provide a clear
representation of walking data. We will introduce the generation
of the simulation data and the algorithm built upon our compact
graph-based representation.

3.1 Generation of the Dataset
Our method is designed to minimize disruptions during VR experi-
ences where a user can freely explore the environment by leveraging
historical walking data. However, there is no off-the-shelf solution
that can accurately and conveniently record the detailed walking
data of users. Therefore, we propose to simulate the user’s walking
to obtain the required large amount of historical data. To make
our method applicable in real use cases, we generate the simulated
walking data with some assumptions based on our observations of
VR users’ walking in the preliminary experiment. The assumptions
are:

• During the exploration process, the users have a large proba-
bility of moving toward the destination in the virtual scene.

• When moving toward the destination, the user will have a
certain probability of being attracted by other destinations.

• Users are likely to stay at a destination for a while before
moving on to the next destination.

• The user‘s walking trajectory is not fully straight. Instead, the
walking trajectories can contain some random patterns.

The above four assumptions are our main rules to guide the
generation of our user walking data. We consider the assumption that
users often walk towards certain destinations based on the following
reason: In a real VR application where users can freely walk, the
user often has a specific task involving moving to a destination in the
virtual space. VR explorations where users only walk aimlessly in a
large space are very rare. Therefore, in this work, we focus on the
scenarios where the users can experience, rather than an environment
that probably is only useful for programmers and developers.

Since users could have different walking styles and it is impossi-
ble to enumerate all of the styles when simulating the walking data.
Instead, we use the following way to generate various user walking
data: We divide the user’s walking trajectory into different temporal
sections. In each section, the user may adopt three different walking
modes, namely walking straight forward, walking clockwise and
counterclockwise along an arc with a fixed radius. In our work, we
set the radius of the arc to 3m. Among the three modes, advancing
along the arc can be more specific by defining advancing to the
left front and advancing to the right front. The path length of each
temporal section is consistent, and various walking trajectories can
be simulated according to the different arrangements and combina-
tions of these three modes. This is not sufficient for walking data
generation, because this only ensures that different trajectories can
be generated, but does not let the users mostly move toward the
destination in the virtual scene. Therefore, we adopt the method of
dividing the trajectory into sections to generate the path between
two destinations each time and apply a coordinate transformation
on the generated path to ensure the path follows our assumptions.
Finally, the paths between different destinations are stitched together
to generate smooth user walking trajectories. In order to satisfy the
second assumption, we randomly add a random interference to make



a small probability of changing the user’s current destination. Here,
we can use the location where the interference event occurs as a
temporary destination. We stitch the front and back paths together
through the temporary destination.

Now we briefly explain the different effects of the three different
modes on the generated trajectories. We denote the set of destina-
tions as D = {d1,d2, . . . ,dm}. Each destination in a set containing
the location (dix ,diy). Since we record the user’s position and ori-
entation information of each temporal section, the user’s walking
data is actually represented by a sequence P =< p0, p1, p2, . . . , pn >.
Each pose pi in the sequence contains the user’s position (xi,yi) and
orientation θk. Here, the orientation of the starting point where
(x0,y0) is (0,0) is the x-direction. Suppose the user is walking at
speed v, and the time slice we take is ∆t. Then the user will walk
∆s = v×∆t in the temporal section. We assume that the user is
currently in pose pk = (xk,yk,θk). For the case of moving along a
straight line, the user’s next gesture pk+1 = (xk+1,yk+1,θk+1) can
be expressed as:

θk+1 = θk (1)

(
xk+1
yk+1

)
=

(
xk
yk

)
+R(θk)×

(
∆s
0

)
(2)

R(θi) =

(
cosθi −sinθi
sinθi cosθi

)
(3)

Where R(θi) is the rotation matrix of the vector. It makes the
generated user walking path smooth. Since the user moves in a
straight line during this temporal section, the user’s orientation
remains the same as before. For the case of advancing along an arc
with a fixed radius, the user’s position and orientation will change,
and the user’s next pose pk(xk+1,yk+1,θk+1) can be expressed as:

θk+1 = θk +∆θ , ∆θ = ∆s/r×h(k) (4)

(
xk+1
yk+1

)
=

(
xk
yk

)
+R(θk)×

(
2r sin ∆θ

2 cos∆θ

2r sin ∆θ

2 sin∆θ

)
(5)

h(k) =

{
1, user turns to left
−1, user turns to right

(6)

where h(k) is the function that indicates whether the user goes
along a left or right arc. We calculate the distance between the user’s
current location and starting location after each temporal section.
The generation will stop when the cumulated distance equals the
distance between the two destinations that need to be generated. We
limit the user’s offset angle to ensure that the user’s distance from
the initial position increases after each time slice. We require that
the angle θi of each pose satisfies the following condition:

|θi −θ0|<
π

2
or |2π −|θi −θ0||<

π

2
(7)

When the angles of all poses satisfy the above condition, we can
ensure that walking along the generated path is moving further away
from the initial point and closer to the destination. However, just
meeting the condition about the distance is not sufficient. We also
need to do a 2D transformation on the generated path to make it
connected with other paths. Suppose that what is currently gen-
erated is the user’s path from the destination du to the destination
dv. Then, according to the above algorithm, we can first generate
P =< p0, p1, . . . , pn > to satisfy:

(xn − x0)
2 +(yn − y0)

2 ≥ (dvx −dux)
2 +(dvy −duy)

2 (8)

Be attracted with low possibility

Main destination

User’s position

Rotate

Stitched from three modes:

Another destination

Figure 2: The generation of simulated walking trajectories.

When the temporal section is small enough, we can consider that
equation holds when the condition is satisfied. Then we only need to
perform a rigid transformation on each point pi in the sequence P to
make the p0 and du coincide and the pn and dv coincide. After the
rigid transformation, the sequence P′ =< p′1, p′2, . . . , p′n > is added
to the entire user path. The sub-paths are generated one by one
according to the same algorithm. The rigid transformation changes
each point in the sequence as follows:

α = arctan
dvy −duy

dvx −dux

+
π

2
g(i)−θn (9)

(
x′i
y′i

)
=

(
dux

duy

)
+R(α)×

(
xi
yi

)
(10)

The process of trajectory simulation is shown in the Fig. 2. After
investigating the number of places that users mainly go to in different
virtual scenes, we set the number of destinations in the dataset to
5−10. For each scene, we generated 500−1000 pieces of historical
user walking data. When generating, the temporal section is set
to 1/30s, and the user’s speed is assumed to be 1m/s. In order
to restore the user’s trajectory in the virtual space, our simulated
path will randomly stay at the destination for a certain period. We
also provide probabilities for selecting different walking modes
(straight, clockwise, or counterclockwise), and different historical
user walking data can be generated by changing these probability
values.The time taken to generate the simulation dataset depends
on the total length of the paths and the time dispersion. For a
virtual environment with given parameters (speed, walking mode
probability, etc.), we set the temporal section to 1/30s in order to
generate a simple video of the paths. At any moment during runtime,
the next pose can be calculated in constant time. Also, since each
pose is rigidly transformed at most once, the time complexity of the
algorithm is of the same order as the output. When the total length
of the path is 10000 meters, the computation time is 0.5-1.0 seconds.
When generating simulation paths for a new virtual environment, we
can complete the generation in a short time without pre-loading any
simulation path data.

3.2 Encode from Historical Trajectory Data
The raw historical trajectory data is messy and noisy, thus, is difficult
to use. If the data is from the real world, it could also contain useless
information, such as the user’s walking habits. As seen from Fig. 3,
some people walk very straight, some walk along arcs, and some
walk tremblingly. We also found that even just walking between the
same targets a and b, the walking trajectories of different people will
be different. As shown in the Fig. 3, they seem to be doing different
things. These situations will significantly affect the redirection of



(a) (b) (c)

Figure 3: Walking trajectories of different users. (a) A user walking
tremblingly. (b) A user walking straight. (c) A user walking along arcs.

Figure 4: A heatmap generated from the walking data.

our method. Thus, we need to eliminate meaningless information as
much as possible.

First, we discretized the virtual space with an interval of 0.1m
to obtain a discrete representation of user positions in the virtual
space, making the calculation possible. The user will stop at certain
positions in the virtual space, which are usually interaction points or
their destinations in the virtual space. We first obtain the destinations
according to the historical data of the user’s stay. Given these
destinations, we divide the historical walking data of each user by
the destinations to obtain sub-paths and the two endpoints of each
sub-path. If it is the first/last sub-path, its two endpoints will include
the starting/ending point of the entire user’s walking trajectory. For
each discrete point, we record the count of times the user passes
them. When the minimum distance between one sub-path and a
discrete point is less than 0.3 meters, we consider that the sub-path
passes that point. Summarizing all the users’ walking data, we can
get an overall heatmap that records each discrete point’s count of
being passed. In Fig. 4, we visualize the heatmap where we use
different colors to represent different counts.

With the heatmap of historical walking data, it becomes intuitive
to extract representative paths. All we need to do is to find the path
with the darkest color. First, we define that a point can be connected
to eight adjacent points, and a path is a set of connected points from
one waypoint to another. The same point can only be passed at most
once by one path. We define P(a,b) as the set of all paths starting
at a and ending at b. Now we need to find a representative path
from a to b. Specifically, we need the set of connected 2D points
C′ = {c′1,c

′
2, . . . ,c

′
n} of the sub-path between the two endpoints to

satisfy the following conditions:

pathValue(Ci) = min
c j∈Ci

value(c j), Ci = {c1,c2, . . . ,c j, . . .} (11)

pathValue(C′)≥ pathValue(Ci), ∀Ci ∈ P(a,b) (12)
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Figure 5: An example of a processed weighted directed graph. Di-
rected edges with a weight of 0 are hidden.

where Ci is any path, c j is a discrete point in the path and the
value function allows us to obtain the times of that discrete point
being passed. If there are multiple eligible paths, we take any one of
them as a representative path.

We observed that the probabilities of the users walking from
one waypoint to other waypoints are significantly different. Tak-
ing this into account in our algorithm will obviously improve the
performance of our algorithm. We define here a weighted directed
complete graph Gw whose nodes are all the waypoints. The edge
weights of Gw can be obtained directly from the preprocessed histor-
ical user walking data as follows, where W (u,v) refers to the weight
of the edge from u to v, and Count(u,v) refers to the number of
paths from u to v, equivalent to |Path(u,v)|. Wumax is the maximum
value of the weights of the outgoing edges starting from u.

W (u,v) =
Count(u,v)

∑k Count(u,k)
(13)

Wumax = maxW (u,k), k ̸= u (14)

Now we get a directed graph from the historical walking data.
Fig. 5 is an example of a weighted directed graph.

3.3 RDW based on the Graph
Before discussing how to use weighted directed graphs, we first
introduce how to discretize the user’s position and orientation in
physical space, which will help us quickly calculate from the infinite
possibilities. The spacing between discrete locations is set to 0.5m,
a length slightly larger than the width of a human shoulder, enough
to describe the user’s position in the room. We uniformly sample
twelve angles to discretize orientations such that the angle between
two adjacent orientations is π/6.

Given the weighted directed graph, we can obtain the distance
between the user’s position on a path and their current destination
and get the probability of the user going in different directions when
reaching a waypoint. We design an effective redirection algorithm
to utilize the above two kinds of information. Previous predictive
algorithms could work in similar situations, but since there are no
obstacles or virtual boundaries to limit the user’s walking paths and
the user has a possibility to go beyond the expected path, an effective
algorithm needs to consider the state of users to work well for an
environment that a user can freely explore. Therefore, compared
with the algorithm of selecting several walking modes and searching
in a certain depth, which is usually used by the predictive methods,
we use the greedy algorithm to avoid being limited to certain types
of walking patterns without the constraints imposed by the searching
depth. Our method is able to make redirection with the consideration
of all positions and orientations that can be reached from the current
position and orientation with gain constraints.



We categorize the user’s walking states into the following types
and apply corresponding strategies for guiding their walking:

On the path between two waypoints Our algorithm de-
fines two kinds of user situations when they are on the path between
two waypoints: 1. If the user has to reset at least once when walking
from the current discrete pose to the next waypoint (that is, to reach
the next waypoint in the virtual space, the user’s path in the physical
space will be folded for continuing walking), we intend to select the
target pose based on the distances to these reachable poses. 2. When
the user can walk to the next waypoint without a reset, we will use
a higher probability of choosing them as the next destination. To
achieve that, we give it an extra score that makes it easier to stand
out than other poses.

We use the method of evaluating discrete points in physical space
in the work of Xu et al. [37], which contains the following steps: 1.
Build a discrete representation to describe the user’s poses, includ-
ing their positions and orientations. The discrete poses are called
standard poses. 2. Connect two standard poses with a path that
holds a tangent continuity at the entry and exit points and has a fixed
curvature to satisfy the gain threshold. 3. Evaluate the standard
poses using a function Q(x,y,θ). The calculation of Q(x,y,θ) for a
certain standard pose (x,y,θ) is based on the estimation of all the
standard poses it can reach and the distance between (x,y,θ) and
each of the standard poses. The distance is used as a reward. Finally,
the evaluation function is used to find the optimal standard pose to
guide the user to redirect to it. Assuming the user is currently at
position (u,v) facing β and has a path length srest to the next desti-
nation in virtual space, the score of each reachable pose (xi,yi,θi) is
calculated as follows:

S(xi,yi,θi) = Q(xi,yi,θi)+G(xi,yi,θi) (15)

G(xi,yi,θi)=

{
1000 ,Dis(xi,yi,θi,u,v) ∈ [0.86× srest ,1.26× srest ]

0 ,Dis(xi,yi,θi,u,v) /∈ [0.86× srest ,1.26× srest ]

(16)

S′ = maxS(xi,yi,θi) (17)

where Q(xi,yi,θi) is the score of the physical space in Xu et
al. [37]’s work, and Dis(xi,yi,θi,u,v) refers to the path length from
pose (xi,yi,θi) to position (u,v), which can be calculated by the
previous path connection algorithm. The value of G is decided by
comparing srest with dis(x,y,θ ,u,v), which determines whether the
user can reach the pose (xi,yi,θi) without reset. If the user can reach
it, we will add 1000 as a reward. Otherwise, it means that the user
needs a reset before arrival and the score will be the same as Q,
which is determined to some extent by the distance. We use S′ to
denote the highest score of all the evaluated poses. When guiding
the user, we will select its corresponding physical pose as the target
pose.

At a waypoint and making a turn When the user is at a
waypoint u and starts to turn, we try to find the rotation gains to
make all the possible virtual orientations of the poses starting from
the current position correspond to the orientation with the highest
score in the physical space. Since we already know all the waypoint
information, we can use this to adjust the gain. More specifically,
We adjust the rotation gain to 1 when there is a waypoint within 30◦
range in front of the user, to 1−0.2×W (u,v)/Wumax when there is
a waypoint v within 10◦ in front of the user, and to 1.49 when there
is no waypoint within 30◦ in front of the user.

Outside the path of the graph When the user is outside the
weighted directed graph in the virtual space, we can only use some
of the information provided by the graph. According to the user’s
current orientation, we can get the possible destinations in front of
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Figure 6: Layouts of our physical spaces. (a) Four obstacles, (b) One
obstacle, and (c) No obstacles.

the user and consider the impact of these points when selecting a
path to guide the user in physical space.

We can take each of these waypoints in the user’s current ori-
entation as the next waypoint, set srest to the euclidean distance
between the current position and that waypoint, and compute the G
function for each pose as in the first case. The difference is that the
calculation is done for each waypoint, and we greedily add up the
values of these G functions to find the optimal pose and guide the
user there.

4 EVALUATION

We conduct extensive simulation experiments to compare our
method with previous methods. We also design and conduct a
user experiment to demonstrate the effectiveness of our method in
real applications.

4.1 Simulation Experiment

4.1.1 Experiment Environment

A significant advantage of simulation experiment is that a substan-
tial number of experiments with a large diversity of their physical
spaces can be conducted simultaneously, which is impossible for
conventional user experiments. Therefore, simulation experiments
have been widely used to evaluate a method in previous related
researches. We tested the performance of the algorithm in three
different physical environments. We set the size of the three physical
spaces to 10× 10m. Their main difference is in the distribution
of obstacles in space. We placed four obstacles of the same size
2m×2m in the first physical space, as shown in Fig. 6 (a). These
four obstacles divide the physical space into criss-cross paths. We
placed a 4×4m obstacle in the middle of the second physical space,
as shown in Fig. 6 (b), which will make the user only move around
the physical space. In the third physical space, we do not use any
obstacles, as shown in Fig. 6 (c), and the user can walk freely in
this space. In the first and the third environments, we set the user’s
initial position as (5.25,5.25). We set the user’s initial position in
the second environment at (1.25,1.25). The initial orientation of the
user is the negative direction along the y-axis.

The size of the virtual space we use is 20m×20m, which users
can explore freely. We set the user’s initial position in the virtual
space as the center of the virtual space and the initial orientation
of the user as the negative direction of the y-axis. The user’s walk
speed is a constant speed of 1m/s. The turning speed of a user is set
as a fixed angular velocity of π/2 rad/s after reaching the waypoint
until facing the next waypoint. In each test, we simulated 100 virtual
waypoints.

The test data are generated based on the same rules applied to
the generation of the user’s historical walking data, making the
test more similar to real applications. According to our survey, we
simulated and generated historical user walking data for 10 different



Table 1: The mean of reset times of different predictive algorithms in the test virtual scenes.

Environment Method S0(7) S1(5) S2(8) S3(6) S4(10) S5(6) S6(6) S7(8) S8(8) S9(9) Total

no obstacle FORCE 143.5 164.4 137.2 92.3 264.0 159.2 228.0 217.1 144.3 409.4 195.57
MPCred 82.7 104.8 93.5 72.2 81.4 74.9 83.2 93.5 80.3 98.3 86.48

OUR 75.1 89.3 80.0 64.1 75.3 67.7 73.2 82.0 73.5 84.0 76.42

one obstacle FORCE 143.0 177.7 181.4 221.3 211.3 198.1 338.0 187.0 143.6 254.7 206.52
MPCred 117.3 139.9 127.3 96 120 108.4 114.8 132 111.9 127.3 119.49

OUR 84.1 94.2 86.5 76.5 84.2 76.9 83.5 92.7 78.0 88.1 84.47

four obstacles FORCE 145.1 173.5 204.2 290.9 275.9 207.1 281.6 240.6 195.8 177.8 219.25
MPCred 124.2 147.6 133.7 99 124 110.9 121.2 136.8 120.3 138.1 125.58

OUR 98.5 115.8 109.4 85.2 98.3 83.1 99.9 111.4 94.2 110.3 100.61

Table 2: The mean of reset times of different reactive algorithms in the test virtual scenes.

Environment Method S0(7) S1(5) S2(8) S3(6) S4(10) S5(6) S6(6) S7(8) S8(8) S9(9) Total

no obstacle

S2C 91.2 115.5 105.1 84.2 90.0 82.3 95.0 126.7 111.2 115.2 101.64
S2O 119.4 109.8 129.5 78.1 97.9 82.5 97.2 121.9 108.4 142.4 108.71
SRL 107.1 100.1 96.9 74.8 96.0 81.1 93.4 102.1 94.2 103.8 94.89

ZIGZAG 209.9 312.8 245.5 342.0 182.3 157.1 163.7 195.2 261.2 154.9 231.08
APF 61.2 75.4 70.8 44.3 66.3 53.3 62.3 75.7 62.6 73.0 64.49

XU2022 80.0 101.1 89.3 66.4 82.4 69.5 77.0 93.8 79.9 87.3 82.67
OUR 75.1 89.3 80.0 64.1 75.3 67.7 73.2 82.0 73.5 84.0 76.42

one obstacle

S2C 198.7 223.3 213.9 192.6 246.2 202.3 196.7 213.5 186.0 217.0 208.94
S2O 129.4 151.2 133.3 119.9 125.0 112.8 147.5 132.8 124.3 150.0 132.62
SRL 163.6 204.8 173.9 160.1 166.2 153.1 169.7 192.1 166.9 178.6 173.41

ZIGZAG 262.9 241.5 284.4 250.0 197.5 204.5 359.6 300.2 319.2 257.1 269.36
APF 192.1 272.2 251.0 174.7 207.6 171.3 208.0 223.8 206.0 233.2 213.99

XU2022 104.7 123.6 111.5 95.6 106.1 98.0 106.0 115.2 101.0 116.3 107.80
OUR 84.1 94.2 86.5 76.5 84.2 76.9 83.5 92.7 78.0 88.1 84.47

four obstacles

S2C 237.5 296.4 281.9 204.6 239.6 212.3 269.2 267.2 269.1 265.1 253.42
S2O 269.8 311.0 288.8 236.0 262.6 229.5 270.9 318.4 259.1 291.9 276.18
SRL 250.3 250.7 236.1 193.6 209.7 173.7 206.9 231.4 204.3 225.7 218.30

ZIGZAG 263.1 357.3 250.3 254.4 276.4 322.9 241.0 264.6 299.0 278.5 278.87
APF 208.2 242.8 220.8 190.9 207.2 188.7 207.6 231.6 207.5 227.4 213.27

XU2022 120.7 152.6 133.9 104.5 125.7 108.3 124.5 136.4 117.4 137.6 126.16
OUR 98.5 115.8 109.4 85.2 98.3 83.1 99.9 111.4 94.2 110.3 100.61

virtual environments, and the number of destinations in each virtual
environment was set to between 5 and 10.

We simulate the scenario where the user can walk completely
freely in the virtual space by removing all the obstacles in the vir-
tual space of our test environment. Some related researches use
obstacles and boundaries in their virtual space, sometimes leading
to a virtual space shape where their method is advantageous during
testing. However, the scenes of the real use cases can be significantly
different in terms of their shapes and obstacle layouts. Therefore,
we choose not to insert any obstacles to limit their walking. Instead,
we require them to walk to the next waypoint to encourage them to
walk in a certain direction and not limit their walking paths. This
approach can easily evaluate the performance of the algorithm in
different environments. For each virtual scene, we generated 10
virtual paths for testing. That means each algorithm will be tested
by 100 times in each physical space. An algorithm will be tested
300 times in different virtual environments and physical spaces.
The simulations were run on a Windows computer with an Intel(R)
Core(TM) i5-4200H CPU and 8GB RAM.

4.1.2 Comparison Experiments with Predictive Algorithms
Our approach shares many similarities with predictive algorithms.
Predictive algorithms also consider the user’s possible future move-
ments in their prediction. However, most of the predictive algorithms
only predict the walking paths of the user by analyzing the layout of
obstacles or the boundaries of the virtual space. For example, the
FORCE method [40] assumes that the virtual space is a virtual store
with aisles. The virtual space is divided into long, narrow horizon-
tal/vertical aisles by the shelves. A user clearly has several possible

directions when they are in the middle of an aisle or a cross. The
MPCred method [18] proposed by Nescher et al. also uses a similar
furniture shop as the experimental environment. Prediction algo-
rithms can achieve good performance when directing users in those
regular environments. However, they cannot represent most types of
virtual layouts in real applications. When the user is able to explore
the virtual environment freely, they are not able to provide effective
guidance. On the contrary, our method relies on the historical data
regardless of the specific spatial layouts in the virtual space, thus
can be adopted to a free space. Since our algorithm also predicts the
user’s future movement, the input of our algorithm can also become
the input of FORCE. We test FORCE, MPCred, and our algorithm in
ten virtual spaces with three different physical spaces. Considering
that the interruptions caused by encountering obstacles greatly affect
a user’s experience quality, we use the number of resets for a user
as the metric of the performance of each algorithm. The test results
are shown in Table 1. Each of the 10 virtual environments has a
different number of destinations. We denote the i-th virtual scene
with j destinations as Si( j).

The search approach adopted in FORCE is time-consuming, espe-
cially when the search depth is extremely large if the user can freely
explore the virtual space. In theory, the paths connecting different
destinations form fully-connected graphs, and the complexity of
the search algorithm is exponential. When implementing FORCE,
we considered 5 different curvature gains and 3 different rotation
gains. We did not consider the translation gain because the number
of different combinations of the translation and the curvature gains
would be too large. We set the search depth to 2. Nevertheless,
FORCE was still the slowest among all the tested algorithms and ran



Figure 7: The box plots of the experiment results. The outliers are not
included in the whiskers.

even slower when there were more destinations. MPCred produces
better results than FORCE and most reactive methods, but it is still
worse than our result, demonstrating that the conventional predictive
algorithms do not fit the virtual space that can be freely explored.

4.1.3 Comparison Experiments with Reactive Algorithms

Reactive algorithms often work better in virtual environments where
users can freely explore. Heuristic-based methods are generally bet-
ter in real-time. We realize the test of Xu et al.’s work in 2022 [37]
through simulation experiments. Tested Steer-to-Center (S2C) [9],
Steer-to-Orbit (S2O) [9], Zigzag [23], Thomas etc. al.’s APF [30]
and the steer-by-reinforcement learning method (SRL) by using
OpenRDW [16] platform. These algorithms are tested in each physi-
cal space with a total of 100 paths in ten virtual scenes. The results
of the test are shown in Table 2. When using the OpenRDW to test,
if the user stays in one place for too long or the number of resets is
too high, we will directly end the test and declare the test invalid. In
the tests of all algorithms, S2C has a total of 5 invalid tests, S2O has
a total of 1 invalid tests, SRL has a total of 15 invalid tests, ZigZag
has a total of 46 invalid tests, and APF has no invalid tests.

The results show that APF performs best in scenes without obsta-
cles, followed by our algorithm. For scenes with one obstacle in the
center of physical space, our algorithm performs significantly better
than other algorithms with the fewest resets in all virtual scenes. The
method of Xu et al. also performs well in this scenario. In addition,
S2O performs better than other algorithms, which is consistent with
the characteristics of the algorithm. Our algorithm and Xu et al.’s
algorithm far outperform others in the scenario of evenly distributing
4 obstacles in the physical space. Our algorithm slightly outperforms
Xu et al.’s algorithm in all 10 scenarios. S2O, which performs well
when there is one obstacle in the center of the physical space, per-
forms almost as badly as ZigZag when the distribution of obstacles
in the physical space does not match the algorithm characteristics.
ZigZag performs the worst in all physical spaces. The box plots of
the results of experiments are shown in Fig. 7.

4.1.4 Discussion

From the results of the above experiments, we can see that our algo-
rithm has excellent results compared with the predictive or reactive
algorithms. The predictive algorithm FORCE does outperform most
reactive algorithms in many scenarios. However, as the number of
destinations in the physical space increases, FORCE takes more and
more time and resources. The limits of predictive algorithms make
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Figure 8: User experiment environments. (a) Third-person view of the
virtual scene and user. (b) Top view of the virtual environment. (c)
Photo of the physical environment.

people pay more attention to reactive algorithms. There are many
types of reactive algorithms, heuristic-based, reinforcement learning
based, etc. Reactive algorithms are not limited by virtual space and
usually have better real-time performance. Specific algorithms in
specific scenarios may have better performance. For example, S2O
performs well when the obstacle is in the center of the physical
space, and APF achieves the best results when there is no obstacle
in the physical space. These algorithms are excellent, take into
account various properties in physical space and use various gains
well. However, another point that these algorithms rarely consider
is the interaction between the user and the virtual space. With the
interaction, users have various experiences in the virtual space; the
interaction itself is also a kind of information that can be used. Our
algorithm considers the historical user walking data and implements
the RDW algorithm on this basis. It has an excellent effect as predic-
tive algorithm and can be used generally in various virtual spaces.
Our algorithm’s results are only slightly inferior to APF when there
are no obstacles in the physical space. Our algorithm outperforms
other algorithms in scenes with obstacles. In many cases, it even
owns half of the number of resets compared to most algorithms.
APF performed well in a physical space without obstructions and
had 2− 3 times as many resets as our algorithm in the other two
tests.

4.2 User Study
4.2.1 Experiment Design
We evaluate our method through real user experiments. Since pre-
dictive methods are not applicable for our environments, we choose
representative reaction algorithms, S2C [9] and APF (Thomas APF)
[30] to compare with our method. Our virtual environment is a
10m*10m square room containing a crystal to indicate the desti-
nation. Each subject wore an HTC VIVE while walking within a
4m*4m square tracking space with a 0.5m wide buffer to prevent
collision.

The subjects were initially located in the center of the virtual and
physical space. Before the experiment began, subjects took a prelim-
inary test in the virtual environment to reduce discomfort during the
formal experiment. They performed three walking experiments with
the same sequence of waypoints in all three experiments, testing
S2C, APF, and our method, respectively. We used a crystal to mark
the target position in the virtual space. When the user touched the
crystal, the crystal representing the current target would disappear
and the next target crystal would appear at a different position. The
user’s task was to go through 10 waypoints. It should be noted that
we did not specify the paths for the user to follow when walking
towards the next waypoint.

We recorded the number of resets and the distance traveled in the
virtual space. The total reset number can roughly reflect the inter-
ruption of the user’s VR experience. However, since our experiment
does not strictly limit the user’s walking path, just checking the reset



Figure 9: The distribution of the total number of resets and the average
distance between two resets.

number is not sufficient to evaluate their experience. Therefore, we
add the average distance the user walked in the virtual space be-
tween two successive resets as another indicator for their experience
quality. Generally speaking, the longer this distance is, the better
the user’s VR experience is.

4.2.2 Result

We collected information from 15 subjects whose ages were dis-
tributed from 18 to 27 years old (9 females and 6 males). 10 of them
stated they had VR experiences. The distribution of the total number
of resets and the average distance traveled by the user between resets
is shown in Fig. 9.

We used the Shapiro-Wilk test to check the total number of
resets. All 3 groups of data followed normal distribution (p =
0.780,0.978,0.944 > 0.05). In the Levene’s test, the 3 groups of
data show homoscedasticity (p = 0.156 > 0.05). Therefore, we
performed an analysis of variance using one-way ANOVA and the
statistical results were significant, with differences between meth-
ods in the total number of resets (F = 5.672, p = 0.007 < 0.01).
The t-test showed that our method had fewer total resets than the
S2C algorithm (t(14) =−4.059, p < 0.01) and the APF algorithm
(t(14) =−4.236, p < 0.01). The Shapiro-Wilk test shows that the
mean walking distance of users does not follow the normal distri-
bution (p < 0.05). In the Kruskal-Wallis test, the results show that
there is a significant difference between different methods in terms
of the the average user walking distance. The average user walking
distance of our method is greater than the S2C algorithm (p < 0.05)
and greater than the APF algorithm (p < 0.05).

The physical space without obstacles has been used in both simu-
lation and user experiments. It can be seen that the APF algorithm
have different results in the two experiments. A possible reason is
that the configurations of the two experiments are not exactly the
same: we used a 10m*10m physical environment in the simulation
experiment, but a 4m*4m physical environment in the user exper-
iment due to the length limitation of the cables. The surrounding
walls naturally form a barrier, which makes the space available for
free exploration much smaller than the barrier-free environment
in the simulation experiment, and is more like a new environment
configuration than the barrier-free environment.

The results of user experiments show that our method is more
effective than previous methods. Our method successfully reduces
the number of resets using historical data and increases the continuity
of the immersive experiences in VR applications. Moreover, our
method has no restrictions on the virtual environment, and users
can explore freely in it. In our experiments, although we do not
specify the path for the user between two targets, subjects tend to
walk along paths that are similar to the simulated paths we produced,
which means that the they do not stay outside the weighted directed
graph for a long time, allowing us to effectively guide the user to the
optimal physical space pose in most of the time.

Since a single set of experiments required subjects to walk about

50m, which is too long for some people and may cause VR sickness
such as nausea or vertigo, we prepared a motion sickness SSQ [13]
table for the subjects. The results showed that most people did not
have adverse reactions during the test, and a small number of people
had mild vertigo. In the conversation, we learned that the vertigo
might be caused by some fast rotations when resets happen.

5 CONCLUSION AND FUTURE WORK

We design a novel RDW method based on historical user walking
data. We encode the historical user walking data to a heatmap,
and generate a weighted directed graph from the heatmap for a
discretized representation. We dynamically update the scores of
different reachable poses in the physical space during the user’s
walking. We rank the scores and choose the optimal target position
and orientation to guide the user to the best pose. Every time the
user turns or finishes resetting, we find a target pose in physical
space and guide the user to get there. In our experiments, our
method significantly reduces the interruptions in the user’s walking
experience, outperforming previous predictive algorithms when the
physical scenes have obstacles. Moreover, our algorithm has a wide
range of application scenarios as reactive algorithms but has a much
better performance.

Our algorithm has some limitations. Because our algorithm is
based on historical user walking data, it does not perform better than
other algorithms without that data. Secondly, our method cannot
be used in dynamic environments with variable obstacles, as our
algorithm requires prior information about the physical environment.
Thirdly, since there is no off-the-shelf solution that can accurately
and conveniently record the detailed walking data of users, we need
to use a manual simulation of the walking data. Although we can
generate all possible paths by changing parameters, the generated
data is not as sophisticated as the real walking data, which may have
an impact on the accuracy of our simulation-based approach. At the
same time, although we have a dense heat map, only the distance of
the user to the next destination or whether the user is heading to the
next destination is considered in the heat map. In the future, we will
encode more accurate user walking information in our graph-based
representation to provide a more precise guidance.
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