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Figure 1: An input omnidirectional video (left) is decomposed into its reflectance and shading components (middle) by the
proposed method. The decomposition results can be further used for video manipulation applications (right).

ABSTRACT

Intrinsic decomposition of omnidirectional video is a challenging
task. We propose a method that can provide temporally consistent
decomposition results. Leveraging the 360-degree scene representa-
tion, we maintain the global point cloud to propagate and reuse the
similar inter-frame content and establish temporal constraints which
elevate the quality of frame-wise decomposition while maintaining
inter-frame coherence. By optimizing the proposed objective func-
tion, our method achieves a precise separation of reflectance and
shading components. Comprehensive experiments demonstrate that
our approach outperforms existing intrinsic decomposition meth-
ods. Our method also hold promise for various video manipulation
applications.

Index Terms: Computing methodologies—Computer graphics—
Image manipulation; Human-centered computing—Visualization—
Visualization techniques

1 INTRODUCTION

Omnidirectional video offers a holistic 360-degree representation of
the scene, offering a comprehensive depiction of the environment
through a sequence of frames. Intrinsic video decomposition allows
for the separation of video into its fundamental reflectance and
shading elements for each frame. This offers a detailed set of light-
related information, which can be used to enhance the immersive
experiences. This decomposition has played a fundamental role
in various 2D video manipulation applications, including realistic
recoloring and retexturing [10].

Generally, intrinsic video decomposition poses a challenging and
inherently ambiguous inverse problem [3], demanding considera-
tion of both spatial and temporal consistency in the decomposition
process [7]. The domain of intrinsic video decomposition has seen
relatively limited exploration [9, 10], with a predominant focus on
enhancing inter-frame consistency. For omnidirectional video, each
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frame not only encompasses a more comprehensive range of visual
information but also exhibits significant correlations across frames.
Previous intrinsic decomposition methods have often neglected these
distinctive characteristics of omnidirectional content. This oversight
results in an underutilization of substantial information that could
guide the decomposition process more effectively.

In this study, based on recovered 3D geometric information from
the recorded scene, we first attain an initial estimation of the scene’s
illumination distribution through identifying globally consistent light
sources for each frame, which aids in subsequent optimizations for
reflectance and shading maps. Moreover, the intricate details of
the scene’s geometry directly contribute to enforcing uniform re-
flectance constraints during the final stages of optimizing shading
and reflectance maps. Leveraging global light source data and main-
taining temporal consistency minimizes redundant computations for
similar content, ultimately elevating the contextual significance of
the decomposition outcomes.

The main contribution of this work lies in the development of an
innovative intrinsic omnidirectional video decomposition method.
By leveraging the 360-degree geometric information embedded
within omnidirectional video, we introduce a global point cloud rep-
resentation to capture inter-frame lighting-related content changes.
This allows a robust estimation of illumination distributions across
frames, enabling the establishment of temporally reflectance and
shading constraints. We then proposed an optimization framework
to extract the reflectance and shading maps with the established
constraints. Our experiment results demonstrate the superior perfor-
mance of our method, surpassing existing image and video decom-
position techniques.

2 METHOD

Intrinsic video decomposition factors each frame of the input video
I ∈ Rh×w into a pixel-by-pixel product of reflectance R and shad-
ing S. Our method utilizes the holistic representation of the scene
inherent in omnidirectional videos for intrinsic decomposition. We
achieve inter-frame stability through a temporal illumination and
reflectance propagation strategy.

We show the overview of our method in Fig. 2. Given an omnidi-
rectional video, we employ Structure-From-Motion to reconstruct
the global point cloud of the scene G which contains N points, each
point has position, normal and reflectance information. And we



Projection

Pre-Extraction

Decomposition

Iterative Updating & Decomposition

SFM

Light Source

Extraction

Initialization

Light Source

Other Objects

Global Point Cloud

Video

Point Set Update

Point Information Update

Reflectance

Shading

Figure 2: Overview of our method.

extract the light source from several keyframes, which is utilized for
initial illumination estimation of each frame. Subsequently, during
the decomposition process for each frame, we obtain the initial es-
timation of the reflectance by projecting the global point cloud to
the camera position. And the initial illumination Sest is obtained
by shading the scene with the extracted light source. Then we intro-
duce temporal reflectance consistency constraints and the temporally
smooth illumination constraints and three other constraints to build
the decomposition model as follows:

argmin
R,S

∥ω(I −R× S)∥22 + λr ∥∇R∥1 + λs ∥∇S∥22

+ λt ∥Mt(R− ϕ(G))∥22 + λa ∥S − Sest∥22
(1)

where ϕ represents the reflectance obtained by projecting the point
cloud to current camera position and the Mt represents the mask of
new pixels in current frame. This non-convex optimization problem
can be solved by the iteratively reweighted least squares (IRLS)
solver to generate the final reflectance and shading of current frame.

During the frame-by-frame decomposition process, the informa-
tion within the point cloud G undergoes iterative updates. These
updates occur both prior to and following the decomposition of each
frame. Before processing a frame, it is crucial to account for the
potential emergence of new scene points that become visible due to
camera motion. These points should be added to the point cloud G.
To prevent the inclusion of duplicate scene points at this stage, we
employ the projection of the previous 3D point set onto the current
frame’s camera to verify whether the corresponding 3D point for
a pixel in the current frame has been previously observed. In addi-
tion, for enhanced decomposition efficiency, we cull 3D points that
remain invisible for an extended period from the point cloud. This
ensures a consistently stable decomposition speed throughout the
entire video. Following the decomposition of each frame, we save
a pixel’s reflectance value to its corresponding 3D point. This will
serve as a reflectance consistency constraint for the decomposition
of the next frame at the corresponding position.

Table 1: Quantitative evaluation on the decomposition results of the
sequence of Video1 processed using the method of [1].

Method sMSE↓ sSMSE↓ sLMSE↓ SSIM↑
Das et al. [2] 0.0243 0.0217 0.0225 0.7908
Luo et al. [6] 0.0478 0.0241 0.0229 0.7360
Li et al. [5] 0.0708 0.0254 0.0237 0.7270

Zhu et al. [11] 0.0384 0.0327 0.0275 0.7410
Li et al. [4] 0.0977 0.0450 0.0416 0.7208

Ours 0.0244 0.0198 0.0196 0.8381

3 EVALUATION

We conduct experiments to verify the effectiveness of our method.
Due to the absence of indoor omnidirectional video datasets suitable
for intrinsic decomposition quantitative analysis, we generated syn-
thetic clips using rendering software, each contains 300 frames. Our
method takes about 20s to decompose a 512×1024 frame. And due
to our point cloud update strategy, the point cloud G only contains
N ≈ 3× h× w points on average.
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Figure 3: Statistics of sMSE and sLMSE over the frames of Video2.
Our method shows better stability and lower errors.

As shown in Table 1, our approach outperforms other methods
across all four metrics. To better assess video stability, we follow the
approach of Meka et al. [8] and plot the per-frame error. Fig. 3 shows
that our method exhibits a lower curve, indicating a lower average
error, and maintains a smoother curve compared to both image and
video decomposition methods, showcasing superior stability.

4 DISCUSSION AND CONCLUSION

We have introduced a novel method for intrinsic omnidirectional
video decomposition. Comprehensive evaluations demonstrate that
our approach surpasses current state-of-the-art techniques, high-
lighting its potential for a wide range of video editing applications.
However, there are some limitations that our method isn’t efficient
enough for real-time decomposition and only takes the static scene
into consideration. We aim to explore more efficient and reliable
approaches to solve these problems in our future work.
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[9] A. Meka, M. Zollhöfer, C. Richardt, and C. Theobalt. Live intrinsic
video. ACM Transactions on Graphics, 35(4):1–14, 2016.

[10] G. Ye, E. Garces, Y. Liu, Q. Dai, and D. Gutierrez. Intrinsic video and
applications. ACM Transactions on Graphics., 33(4), jul 2014.

[11] J. Zhu, F. Luan, Y. Huo, Z. Lin, Z. Zhong, D. Xi, R. Wang, H. Bao,
J. Zheng, and R. Tang. Learning-based inverse rendering of complex in-
door scenes with differentiable monte carlo raytracing. In SIGGRAPH
Asia, pp. 1–8, 2022.


	Introduction
	Method
	Evaluation
	Discussion and Conclusion

