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Abstract
Many recent works have reconstructed distinctive 3D face shapes by aggregating shape parameters of the same identity and
separating those of different people based on parametric models (e.g., 3D morphable models (3DMMs)). However, despite
the high accuracy in the face recognition task using these shape parameters, the visual discrimination of face shapes recon-
structed from those parameters remains unsatisfactory. Previous works have not answered the following research question:
Do discriminative shape parameters guarantee visual discrimination in represented 3D face shapes? This paper analyzes the
relationship between shape parameters and reconstructed shape geometry, and proposes a novel shape identity-aware regular-
ization (SIR) loss for shape parameters, aiming at increasing discriminability in both the shape parameter and shape geometry
domains. Moreover, to cope with the lack of training data containing both landmark and identity annotations, we propose a
network structure and an associated training strategy to leverage mixed data containing either identity or landmark labels.
In addition, since face recognition accuracy does not mean the recognizability of reconstructed face shapes from the shape
parameters, we propose the SIR metric to measure the discriminability of face shapes. We compare our method with existing
methods in terms of the reconstruction error, visual discriminability, and face recognition accuracy of the shape parameters
and SIR metric. Experimental results show that our method outperforms the state-of-the-art methods. The code will be released
at https://github.com/a686432/SIR.

1. Introduction

Facial shape estimation from a single RGB image has been an ac-
tive research topic in both computer vision and computer graphics,
and has various applications in fields such as VR/AR, animation,
face editing, and biometrics. Early works [BV∗99,BV03,PKA∗09,
ZLY∗15] focused on ensuring the projection of 3D faces is faithful
to the input image by minimizing sparse landmark location losses
and dense photometric losses. However, if we only use the super-
vision from the discrepancy between the input image and the pro-
jected counterpart, the face shapes reconstructed from different im-
ages of the same person may look dissimilar, making them difficult
to visually recognize. A fundamental reason is that the expression
and pose have much more significant impact on such reconstruction
losses than discriminative features for individual subjects. Empiri-
cally, the face shape contributes much less error than the expression
and pose in landmark location losses. Therefore, minimizing only
the discrepancy between the input image and the projected coun-
terpart makes it difficult to find the optimal face shape consistently
among different images of the same person. Based on this observa-
tion, learning to regress a recognizable 3D face shape from a single
image with varying poses and expressions has attracted much atten-
tion in recent years. A straightforward solution to this problem is

aggregating the shape parameters of the same person and separating
those of different people. Tran et al. [TTHMM17] pool shape pa-
rameters belonging to the same person to decrease their intraclass
variance. Sonyal et al. [SBFB19], and Liu et al. [LZZ∗18] apply
shape consistency losses to make shape parameters discriminative
and recognizable. Their shape parameters achieve sustainable high
performance in face recognition, but the resulting 3D face shapes
still fail to be visually discriminative, since the authors focus on
improving the discrimination of shape parameters while ignoring
the relationship between shape parameters and shape geometries.
Therefore, to transfer the discrimination of shape parameters to 3D
geometries, the relationship between shape parameters and 3D ge-
ometries needs to be carefully investigated, rather than simply ap-
plying shape consistency losses to shape parameters.

The aim of our research is to reconstruct a stable and recogniz-
able 3D face shape from an input image. More specifically, the re-
constructed face shapes from the proposed method must meet the
following criteria: (1) the neutral face shapes of the same iden-
tity must have low error with each other, based on some geomet-
ric metric such as the root mean squared error (RMSE). (2) Neu-
tral face shapes of different people must be sufficiently different
(e.g. with high RMSE) to ensure that the differences can be visu-

submitted to COMPUTER GRAPHICS Forum (12/2021).

ar
X

iv
:2

10
4.

03
51

5v
2 

 [
cs

.C
V

] 
 2

5 
D

ec
 2

02
1

https://github.com/a686432/SIR


2 Diqiong Jiang, Yiwei Jing, Zhang, Fang-Lue, Lai, Yu-Kun, Deng, Risheng, Tong, Ruofeng, Tang, Min / Reconstructing Recognizable 3D Face Shapes based on 3D Morphable Models

ally perceived by humans. (3) The reconstructed 3D face shapes
under different expressions and poses need to be visually identifi-
able, as those reconstructed from a neutral frontal face image. To
achieve the above goals, as we will later show in Sec. 3.2, the fol-
lowing conditions need to be satisfied in the method: (1) the 3D
shape parameters need to be discriminative under the Euclidean
distance; (2) the centers of 3D shape parameters of the same iden-
tity are the parameters regressed from neutral frontal face images;
(3) the 3D shape basis is orthonormal; and (4) the distribution of
the 3D shape parameters follows a particular multivariate Gaus-
sian distribution, which is an inherent property when constructing
the 3D morphable model (3DMM). In this paper, we design a novel
shape identity-aware regularization (SIR) loss, which explicitly im-
poses shape consistency on the shape parameter space and implic-
itly guides generated face shape geometry to be visually recogniz-
able. As shown in Table 1, the loss functions proposed by existing
methods [LZZ∗18, SBFB19] do not satisfy all these conditions at
the same time.

3D
MMParameter space Geometric space

SIR Loss
Indirectly influence

Figure 1: The SIR loss is designed according to the relationship
between 3DMM parameter space and geometric space. Therefore,
although it only imposes shape consistency directly onto the shape
parameters, it essentially guides the face geometry. These samples
show that the represented face shapes are visually discriminative.

Moreover, the lack of a large database containing both identity
information and 3D geometric information (3D face geometry or
facial landmarks) also makes the task of learning recognizable face
shapes difficult. To obtain a sufficient amount of training data, Tran
et al. [TTHMM17] and Liu et al. [LZZ∗18] use 3D face geometries
in their methods, which are produced by 3D facial labels estimated
from 2D images. Their methods are limited by the capability of ge-
ometry reconstruction algorithms. Another work [SBFB19] relies
on detecting facial landmarks by a facial detector, but the detected
landmark locations are inaccurate, especially in challenging situ-
ations. We apply a more flexible way of dealing with the lack of
training data. Our network and training strategy can accept images
labeled with either identity or geometry information such as facial
landmarks, and combine them during the training process. Conse-

Condition (1) (2) (3) (4)

Liu et al. [LZZ∗18] X
Ringnet [SBFB19] X X
Ours X X X X

Table 1: The conditions satisfied by different methods. (1) The 3D
shape parameters are discriminative with regard to the Euclidean
distance; (2) the centers of 3D shape parameters with the same
identity are parameters regressed from a neutral frontal face image;
(3) the 3D shape basis is orthonormal; (4) the 3D shape parameters
satisfy a particular multivariate Gaussian distribution.

quently, the generation of extra databases with annotations of both
identity and face geometry is unnecessary. In fact, our network al-
lows us to use any off-the-shelf face recognition and face recon-
struction database for training.

In addition, previous works use the face recognition accuracy
of the shape parameters to measure how recognizable their recon-
structed face shapes are. However, we observe that this metric can-
not fully reflect the face shapes’ recognizability. We thus propose a
new Shape Identity-aware Regularization (SIR) metric to measure
the recognizability of face shapes and conduct a user study to prove
the relationship between the SIR metric and the discriminability of
reconstructed face shapes.

This paper investigates the relationship between the 3DMM pa-
rameter space and 3D geometric space and presents a method to
transfer discrimination from the 3DMM parameter space to the ge-
ometric space. We propose a novel SIR loss function for face re-
construction, which comprises two terms: an identification term,
including inter-class separation loss and intraclass aggregation loss,
and a parameter distribution term. As Figure 1 shows, the SIR loss
explicitly imposes shape consistency on shape parameters while
implicitly guiding face shapes such that they are visually discrimi-
native. The main contributions of this paper include the following:

• We investigate the relationship between the 3DMM parameter
space and 3D geometric space and propose that a deep model
should follow four principles so that the resulting face shapes
are discriminative in both the parameter and geometry domains.
• We propose a deep network that is capable of transferring dis-

criminative features from the shape parameter space to the ge-
ometry space with off-the-shelf face recognition and face recon-
struction datasets as training data. We also propose an effective
training paradigm that leads our network to robustly converge
with incompletely labeled training data.
• We propose the SIR loss, which explicitly regularizes 3DMM

shape parameters to satisfy all four aforementioned conditions
while implicitly guiding face shapes to be visually discrimina-
tive. The parameter distribution term of the SIR loss ensures that
the shape geometry discrimination is also visually discrimina-
tive.
• We propose a new metric which measures the stability of face

shape reconstructed from images of the same person and the dis-
tinguishability from images of different people.
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2. Related Work

In the 3D face reconstruction field, 3D faces are reconstructed
from various inputs, including a depth map [KKT∗14], video
[GZC∗16, TBG∗19, CHZ14, HHT∗16, SLL16], multi-view images
[RTL16, PB16, RTL15] and a single image [RSOEK17, TZK∗17,
JBAT17, TZG∗18]. Among them, reconstructing a 3D face from a
single image has attracted more attention because of its simplic-
ity and wide applicability. After several years of research, monoc-
ular reconstruction was generalized from coarse-level reconstruc-
tion by parametric face models [BV03] to medium-level [LYYB13,
BWP13] and fine-level shape [RSOEK17, YSN∗18] corrections.
Recently, some works [TTHMM17, LZZ∗18, SBFB19] considered
using shape consistency to make reconstructed face shapes recog-
nizable. In the rest of this section, we focus on 3DMM face recon-
struction and shape-consistent face reconstruction which are more
closely related to our work.

Monocular 3D face reconstruction based on 3DMM. The
groundbreaking work of monocular 3D face reconstruction with
statistical models can be traced back to Blanz and Vetter [BV∗99,
BV03] which recovered facial geometries by solving an optimiza-
tion problem constrained by linear statistical models, i.e., 3DMMs.
Paysan et al. [PKA∗09] and Zhu et al. [ZLY∗15] extend the 3DMM
with pose and expression parameters. In recent years, Deep Convo-
lutional Neural Networks (DCNNs) have shown strong capabilities
in many computer vision tasks. The existing literature [DSK17,
ZLL∗16, TTHMM17, TZG∗18, GCJ∗18, RSOEK17] reveals that
CNNs can effectively regress the 3DMM parameters with sufficient
training data. They provide comparable reconstruction precision
with much less computation time and adapt to input images un-
der challenging conditions. Richardson et al. [RSK16] build a syn-
thetic dataset using the 3DMM with random shape, expression, and
pose parameters, and render them as 2D images with different lev-
els of illumination. However, the synthesized data cannot capture
the complexity of the real world. Zhu et al. [ZLLL17] fit 3D shapes
with traditional methods and augment data by applying the image
warping technique to simulate in-plane and out-of-plane head rota-
tion. They build the 300W-LP dataset, which covers various head
poses and facial expressions with labeled 3DMM coefficients. In
this way, the shape labels are ambiguous and inaccurate because
they are constrained only by sparse facial landmarks in the fitting
process. Sanyal et al. [SBFB19] regress 3D shape parameters with-
out any supervised 2D-to-3D training data. The landmark labels are
detected by a face detection algorithm, which are not very precise
in challenging conditions (e.g., large poses and poor lighting con-
ditions). Furthermore, sparse landmarks cannot capture sufficient
recognizable features in face geometries. With the development
of generic differentiable rendering [ZWC∗20, LLCL19, KUH18],
[TZK∗17, DYX∗19, TLL19] train networks without shape labels
in an unsupervised or weakly-supervised way by constraining the
consistency between rendered and input images. The photometric
consistency can capture more geometric details, especially from the
frontal face. Our method uses the 300W-LP facial landmarks and
the pixelwise photometric difference as our reconstruction training
losses.

Shape-consistent face reconstruction. Many works [ZLL∗16,
JBAT17,FWS∗18] pursue alignment accuracy or pixelwise appear-

ance accuracy to get precise face geometries. However, the final
face geometry is composed of face shape, expression and pose. Any
of those parameters could dominate the reconstruction if the model
is poorly trained. Therefore, a well-aligned face geometry does not
guarantee the accuracy of a face shape. To reconstruct a stable and
visually discriminative face shape, Tran et al. [TTHMM17] label
a large number of face images with 3DMM shape parameters and
develop a deep CNN to learn the mapping from images to shape
parameters. During training, they pool coefficients that belong to
the same identity to give their output features lower intraclass vari-
ance. Liu et al. [LZZ∗18] propose a multi-task deep CNN to disen-
tangle identity from “residual attribute” to learn the 3D face shape
and discriminative authentication feature together. They use a soft-
max loss function to directly push away the shape parameters of
different people while aggregating those of the same person. Com-
pared with pooling, their loss function can achieve even better face
recognition accuracy with a simpler network structure. Sanyal et
al. [SBFB19] achieve a similar goal by introducing a shape consis-
tency loss embodied in a ring-structured network. However, their
method only aims to achieve shape parameter consistency rather
than visual consistency of shape geometry, and does not attempt to
explain the relationship between shape parameter consistency and
visual shape geometric consistency. Our work takes both shape pa-
rameters and geometry discrimination into consideration and pro-
poses SIR loss to separate shape parameters explicitly and distin-
guish face geometries implicitly.

3. Our Method

This section first introduces the parametric face model. Then, we
investigate the relationship between the 3DMM parameter space
and 3D geometry space and propose principles that the deep neural
network should follow to make the results discriminative in both the
parameter and geometry domains. Finally, the network, loss func-
tion, and training strategy are designed to make our deep neural
network satisfy these principles.

3.1. Parametric Face Model

We follow the previous work [ZLL∗16] which combines the
Basel Face Model-09 [PKA∗09] and FaceWarehouse [CWZ∗13]
by Equation(1) for our 3DMM representation to describe the ge-
ometry of a 3D face model

S = S̄+Aidαid +Aexpαexp (1)

where S ∈ R3n is a reconstructed 3D face with n vertices, which
is controlled by the shape parameter vector αid and the expression
parameter vector αexp for representing various shape identities and
expressions. S̄ ∈ R3n is the mean face shape. The orthogonal ma-
trices Aid and Aexp are the bases of shape and expression, respec-
tively.

Six degrees-of-freedom (rotation and translation) are required to
describe the camera pose. More specifically, 3DMM meshes are
transformed by the camera pose [R|t3d ] ∈ SE3 by the following
Equation(2)

V3d = R · (S̄+Aidαid +Aexpαexp)+ t3d (2)

where V3d denotes the 3D vertices of the transformed 3DMM mesh
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in the camera coordinate system. t3d ∈ R3n is the translation ma-
trix and we use a rotation matrix R converted from a quaternion to
represent rotation.

We apply weak projections to project the 3DMM meshes to the
image plane so a scalar f is introduced as the focal length to per-
form the projection as in Equation(3).

V2d = f ·Pr ·R · (S̄+Aidαid+Aexpαexp)+t2d (3)

where V2d denotes the projected 2D coordinates of the 3D model,
and Pr is the projection matrix

(
1 0 0
0 1 0

)
.

3.2. Properties of 3DMM model

In this subsection, we explore the underlying relationship between
3DMM shape parameters and 3D shape geometries as well as the
conditions in which the separable shape parameters lead to visually
distinguishable face geometries. For simplicity, we focus only on
face shapes regardless of expression and pose in this subsection, so
a simplified 3DMM model is used in the following discussion.

From parameter discrimination to shape geometry discrim-
ination. We denote A ∈ R3n×m as the shape basis, α ∈ Rm as the
shape parameters and S̄ ∈ R3n as the mean face shape. m is the di-
mension of the shape parameters, and n is the number of vertices
of the face shape. The face shape S is represented by Equation(4).

S = S̄+Aα (4)

Suppose x, y ∈ Rm are the shape parameters of two faces. De-
note e = 1

m ‖x−y‖2
2 as the square of their Euclidean distance. Ac-

cordingly, X, Y ∈ R3n are their corresponding face shapes and the
square of their Euclidean distance is E = 1

n ‖X−Y‖2
2. According

to Equation(4), E can be calculated by:

E =
1
n
‖X−Y‖2

2 =
1
n
‖A(x−y)‖2

2 (5)

Assuming that A is an orthonormal basis, the relationship be-
tween E and e is as shown in Equation(6), which means that ge-
ometric Euclidean distance is proportional to the parameter Eu-
clidean distance.

E =
1
n
‖x−y‖2

2 =
m
n

e (6)

This equation proves that when we minimize (maximize) the Eu-
clidean distance between the parameters of face shapes of the same
person (different persons), their corresponding geometric distances
are smaller (larger) as well, which suggests that it is feasible to for-
mulate recognition errors using the Euclidean distance (e.g. center
loss functions) in addition to the cosine distance (e.g. softmax-like
loss functions).

From shape geometry discrimination to visual discrimina-
tion. As mentioned above, in Euclidean space, separation of the
shape parameters ensures separation of the shape geometries. How-
ever, even though the shape geometries can be separated numer-
ically, we cannot ensure that the separation is visually recogniz-
able, since people usually fail to perceive small differences between
meshes. As shown in Figure 3, in each column, shape parameters
are multiplied by a different factor. When shape parameters of a

set of faces are scaled by a factor, it does not influence the sep-
aration of parameters and geometries numerically. However, even
though the shapes in each column can be equally separated numer-
ically through a classifier, visually we find it difficult to distinguish
face shapes when the parameter norms are relatively small, imply-
ing that the same geometry discrimination could have various de-
grees of visual discrimination. We find that only with the center
loss and softmax-like loss on shape parameters, the network has a
high probability of falling into a local minimum that resembles an
average face, where the norm of regressed shape parameters is min-
imal. This observation suggests that in addition to the individual
shape geometry, we also need to pay attention to adding additional
constraints to make the shape geometries visually distinguishable.
According to Equations (4) and (6), the norm of the shape parame-
ters ‖α‖2 is proportional to ‖Aα‖2, i.e., the residual between facial
geometry S and mean face S̄. Therefore, by constraining the pa-
rameters to fit an appropriate distribution, the geometric residuals
of faces can be sufficiently large to make the shapes intuitively dis-
tinguishable.

The 3DMM is based on assuming that the data (face vertex posi-
tions) follows a multivariate normal distribution. This assumption
is a necessary prerequisite of principal component analysis (PCA).
The multivariate normal distribution of shape parameters is given
by [BV∗99]:

p(α)∼ exp[−1
2

m

∑
i=1

(αi/σi)
2] (7)

where σi is the i-th eigenvalue of the shape covariance matrix. If our
trained model outputs shape parameters that have the same distribu-
tion as in Equation(7), the reconstructed face shape should share the
same level of visual distinctiveness as the scan data used to build
the 3DMM. According to Equation(7), the parameters divided by
the eigenvalues follow the standard normal distribution. Therefore,
we propose to minimize the KL divergence between the parameters
divided by the eigenvalues and the standard normal distribution to
constrain the parameters to fit the distribution described in Equa-
tion(7).

argmin
θ

KL(P(α/σ | I,θ)‖N(0,1)) (8)

where I is the input image and θ is the weight of the network. Once
the shape parameters fit a multivariate Gaussian distribution, the
norm is sufficiently large to represent visually discriminative face
shapes.

From parameter discrimination to visual discrimination. To
reconstruct a visually recognizable face shape, the reconstructed
3D face shapes from images with different lighting, expressions
and poses should be the same as the one from the neutral frontal
face image of the same person. So ideally in the parameter domain,
shape parameters of the same identity should be tightly grouped
around the parameters regressed from the neutral frontal face im-
age. To meet this condition, we modify the center loss [WZLQ16]
to push shape parameters of the same identity towards the cen-
ter of its class and update the center by assigning higher weights
to the samples with smaller expression and pose variance. There-
fore, the parameters regressed from the neutral frontal face image
have a more significant impact on the class center, and the shape
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Figure 2: The framework of our method. Our network contains a feature extraction module (Encoder Module 1) followed by three encoders
(Encoder Modules 2, 3 and 4), which regress different face parameters for rendering respectively from the same output of Encoder Module
1. The confidence map gives the probability of each pixel belonging to skin, which provides pixel-wise weights for the pixel loss and the
perceptual loss. In addition, by enabling the SIR term and the landmark term, even incompletely labeled data can effectively train the
network.

ID

Norm

Figure 3: From left to right in each row, the shape parameters are
multiplied by 0.1, 0.4, 0.6, 0.8, 1.0 and 1.2. The face shapes in
different rows represent different people.

parameters from non-neutral and non-frontal faces will approach
those from the neutral frontal face using the modified center loss. In
summary, to transfer parameter discrimination to visual discrimina-
tion, the shape parameters should satisfy the following conditions:
(1) the shape parameters are discriminative in Euclidean space; (2)
shape parameters follow a specific multivariate Gaussian distribu-

tion; and (3) the centers of the shape parameters are the parameters
regressed from the neutral face image of the identity.

3.3. Network Structure

Our network has four branches to regress the albedo parameters,
shape parameters, a confidence map and other non-identity in-
formation (expression parameters, camera parameters and illumi-
nation parameters). We use the same residual block (Sphere64a)
used in SphereFace [LWY∗17]. As shown in Figure 2, Encode
Modules 2, 3 and 4 contain last two blocks (Conv3.x,Conv4.x) of
Sphere64a, followed by a fully-connected (FC) layer. They share
the weights of Encode Module 1, which contains the first two
blocks (Conv0.x,Conv1.x) of Sphere64a. Encode Module 1 serves
as the feature extraction module, while Encode Modules 2-4 serve
as the feature separation modules. The feature extraction module
shares its low-level features with the feature separation modules,
reducing the number of parameters of the whole network. Encode
Modules 2-4 improve the network ability to separate high-level
features. By balancing the depth of the feature extraction module
and that of the feature separation modules, the network can ob-
tain better results with fewer network parameters. The FC layer
adapts the output features to the size of our parameters (199-dim of
the shape parameter, 29-dim of the expression parameters, 7-dim
of the camera parameters, 27-dim of the illumination parameters
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and 512-dim of the albedo parameters). We use the same ConfNet
structure to generate a confidence map as in [WRV20]. The de-
coder of the albedo consists of a transposed convolution network
and regresses the albedo UV map with a resolution of 256×256. We
regard the 3DMM basis as a fully-connected layer with fixed con-
nection weights in the neural network. We build the rendering layer
based on Pytorch3d implementation, and the illumination model is
a spherical harmonic illumination model.

3.4. Loss function

As previously described, our method can be trained using exist-
ing datasets that only contain part of required labels, including face
recognition datasets which contain identity labels associated with
input images, but without ground truth 3D reconstruction, and 3D
face reconstruction datasets which contain 3D reconstruction but
without identity labels. To address this, our loss function contains
three terms: a landmark term, a pixelwise photometric term and
a SIR regularization term. According to the existing labels of the
training samples, we determine which terms can take effect. For ex-
ample, if a training sample has the identity label, the SIR term and
pixelwise photometric term will be enabled. Otherwise, the face re-
construction term and pixelwise photometric term will take effect.
All ε∗’s mentioned in this subsection represent balancing weights
of the loss function.

L =

{
εlLland +Lpixel I ∈ Srecon
εsLSIR +Lpixel I ∈ Sid

(9)

In the above equation, Lland denotes the landmark term, LSIR de-
notes the SIR term and Lpix denotes the pixelwise photometric
term. Srecon is the face reconstruction dataset, Sid is the face recog-
nition dataset and I is the input image. In the rest of this section,
we explain the three loss terms in detail.

Landmark term. The landmark term Lpro j simply uses the L2
loss between projected landmarks V̂2d and ground-truth landmarks
V2d .

Lland =
1
N

∥∥V2d− V̂2d
∥∥

2 (10)

where N is the number of landmarks.

Pixelwise photometric term. As shown in Equation(11), the
pixelwise term consists of two losses: Lrecon and Lreg.

Lpixel = Lrecon + εregLreg (11)

Lrecon measures the reconstruction errors by both the pixel loss Lp
and perceptual loss Lpr on the confidence map [WRV20]:

Lrecon = Lp + εprLpr (12)

The confidence map aims to achieve robustness when occlusions
and other challenging appearance variations exist such as beard and
hair. The pixel loss is defined as follows:

Lp(Î,I,σ) =−
1
|Ω| ∑

uv∈Ω

ln
1√

2σuv
exp−

√
2`1,uv

σuv
(13)

where `1,uv =
∣∣Îuv− Iuv

∣∣ is the L1 distance between the intensity of
input image I and the reconstruction image Î at location (u, v) and

σ∈RW×H
+ is the confidence map. The perceptual loss mitigates the

blurriness in the reconstruction result, which is defined as follows:

L(k)
pr

(
Î,I,σ(k)

)
=− 1
|Ωk| ∑

uv∈Ωk

ln
1

√
2πσ

(k)
uv

exp−

(
`
(k)
uv

)2

2
(

σ
(k)
uv

)2 (14)

where `
(k)
uv =

∣∣∣e(k)uv (Î)− e(k)uv (I)
∣∣∣ is the L1 distance between feature

maps of the k-th layer. e(k)(I) ∈ RCk×Wk×Hk is the k-th layer of
an off-the-shelf image encoder E (VGG16 [SZ14] is used) and
Ωk = {0, . . . ,Wk−1}×{0, . . . ,Hk−1} is the corresponding spa-
tial domain. σ

(k) is a confidence map of perceptual loss.

Lreg avoids overfitting when predicting 3DMM parameters and
albedo UV maps, which is defined as:

Lreg = Lregp + εregaLrega (15)

The regularization term of Lregp for 3DMM coefficients is:

Lregp = εid

mid

∑
j=1

α
2
id j

σ2
id j

+ εexp

mexp

∑
j=1

α
2
exp j

σ2
exp j

(16)

where σid is the eigenvalue vector of the shape basis and σexp is the
eigenvalue vector of the expression basis. αid is the shape param-
eters and αexp is expression parameters. mid and mexp are the di-
mensions of the shape and expression parameters respectively. The
regularization of albedo UV maps consists of smooth and residual
terms, which penalize differences between neighboring pixels and
enforce a prior distribution towards the mean albedo to avoid the
regressed albedo being too much away from the mean albedo.

Lrega(A) = ∑
puv

i ∈Auv

∥∥∥∥∥∥Auv (puv
i
)
− 1
|Ni| ∑

puv
j ∈Ni

Auv (puv
j
)∥∥∥∥∥∥

2

+ εuv
∥∥Auv∥∥2

2

(17)

where Auv is the albedo UV map and Ni denotes the set of 4-pixel
neighborhood of pixel puv

i .

Shape identity-aware regularization term. Our proposed SIR
term includes two components as shown in Equation(18), an iden-
tification loss and a Kullback-Leibler Loss.

Lid = Lrecog + εklLkl (18)

To ensure the criteria that shape parameters are discriminative
in Euclidean space, the identification loss is defined as in Equa-
tion(19). It combines softmax-like loss and center loss [WZLQ16].

Lrecog = Lsm + εcLc (19)

Lsm is a softmax-like loss (e.g. softmax, Cosloss [WWZ∗18], A-
softmax [LWY∗17], and Arcloss [DGXZ19]), which separates pa-
rameters and speeds up the convergence and Lc discriminates fea-
tures in Euclidean space (e.g triplet loss and center loss). We choose
Cosloss [WWZ∗18] as our softmax-like loss.

To ensure the condition that the centers of shape parameters of
the same identity are the parameters regressed from neutral frontal
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face images, we first calculate the confidence, which indicates sim-
ilarity to the neutral frontal face.

f̂ =
1
8
(cosα+1)(cosβ+1)(cosγ+1) · exp−λ‖αexp‖2 (20)

where αexp represents the expression parameters. α, β and γ are
Euler angles of 3D face poses.

We use the following formula to update the centers. It assigns
higher weights to the neutral frontal face.

∆c j =
∑

nb
i=1 δ(yi = j) · (c j− xidi)

1+∑
nb
i=1 δ(yi = j)

· f̂ (21)

where nb is the number of samples in a mini-batch, δ(·) = 1 if the
condition is true and δ(·) = 0 otherwise. yi is the identity label of
the sample, c j is the shape parameter center of the j-th class, and
αid represents the shape parameters.

To ensure that the shape parameters satisfy a specific distribu-
tion, we use the Kullback-Leibler loss to constrain the shape pa-
rameters to fit a zero-mean multivariate Gaussian distribution with
the eigenvalues as its variances.

Lkl = KL(P(α/σ | I,θ)‖N(0,1)) (22)

3.5. Training strategy

Public databases usually contain either identity labels or land-
mark labels. Some existing works need to use face detectors or
optimization-based methods to generate the annotation needed for
face reconstruction. However, these annotations are unsatisfactory
in challenging examples, which limits the performance of models
by those algorithms. Based on the above considerations, we choose
to build a new dataset with a mixture of face recognition and facial
landmark data. Directly training our network on this mixed dataset
with different types of labels results in tricky convergence for the
following reasons: (1) The numbers of samples of face recognition
and face alignment are unbalanced. (2) Incomplete labels can re-
sult in an oscillating learning process. (3) The objective function is
complicated, making our network easily fall into a local minimum
without good initialization. Therefore, it is important to warm up
the network and maintain a balanced proportion of face recognition
and face reconstruction data in the mixed database. The warming-
up stage consists of two steps. First, we train our network on the
300W-LP [ZLY∗15] database without the SIR loss. Second, we
train the whole network on the mixed database with the SIR loss
added. The mixed database consists of VGGFace2 [CSX∗18] and
the 300W-LP [ZLY∗15]. VGGface2 contains 3.31 million images
of 9131 subjects covering a large range of poses, ages and ethnic-
ities. 300W-LP is a synthetically generated dataset based on the
300-W database [SAT∗16] containing 61,255 samples across vari-
ous poses. We only use the 300W-LP landmark labels because the
synthetic face shapes are not precise. Considering that the sample
numbers of the two databases are extremely unbalanced, we design
a sampling scheme in which the probability of selecting samples
from the face recognition database is given by:

P =
Nrecon

Nrecog +Nrecon
(23)

where Nrecon is the number of samples in the face reconstruction

dataset and Nrecog is that in the face recognition dataset. The prob-
ability of selecting samples from the face reconstruction database
is 1−P. We train our model on a GTX2080Ti GPU with a learning
rate of 5e-5 and a batch size of 8.
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Figure 4: Cumulative error distribution (CED) curves on Florence
dataset. We compare our method with Tran et al. [TTHMM17],
Ringnet [SBFB19] and MGCNet with [SSL∗20].

4. Experimental Results

To evaluate the effectiveness of our method, we measure the face
recognition accuracy on the reconstructed faces using the generated
shape parameters and test face reconstruction errors on the MICC
dataset as the previous works. However, as mentioned above, the
face recognition accuracy metric can not fully reflect the recogniz-
ability of the face geometries. Therefore, we propose the novel met-
ric named SIR-scores to evaluate the recognizability of face shape.
Finally, we qualitatively evaluate the visualized reconstruction re-
sults.

4.1. Face Recognition Performance

We design an ablation study to investigate the impact of SIR losses
on face recognition performance and compare it with other methods
based on the 3DMM models. First, we introduce the test datasets
and evaluation method.

Testing benchmarks. We use the following datasets: (1) LFW
[HMBLM08], a standard face verification testing dataset. It con-
tains 13,233 labeled face images for 5,749 different individuals
with a total of 6,000 defined pairs. (2) CFP, the Celebrities Frontal-
Profile dataset [SCC∗16]. It is aimed at evaluating face identifi-
cation with frontal and profile pairs and has approximately 7,000
pairs of matches defined by 3,500 same pairs and 3,500 not-same
pairs for approximately 500 different subjects. (3) YTF, Youtube
face dataset [WHM11]. It contains 3,425 videos of 1,595 individ-
uals. We follow the verification protocol and report the result on
5,000 video pairs.

Evaluation method. In the methods designed for the face recog-
nition task, the identity of a subject in an image can be repre-
sented as a learned latent code. The similarity between two iden-
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Losses
LFW CFP-FP YTF

Lsm Lc Lwc

67.67 54.16 66.46
X 90.55 70.77 81.48
X X 95.23 83.45 89.10
X X 94.47 80.73 86.40

Table 2: The face verification accuracy (%) on LFW, CFP-FP
and YTF for different losses of the shape identity-aware regular-
ization term. Lsm is the cosloss [WWZ∗18]. Lc is the center loss
[WZLQ16], and Lmc is the weighted center loss.

Method LFW CFP-FP YTF
Cosine similarity

3DMM-CNN 90.53 - 88.28
Lui et al. 94.40 - 88.74
D3FR 88.98 66.58 81.00
TDDFA 64.90 57.57 58.50
MGCNet 82.10 70.87 75.58
RingNet 79.40 71.41 71.02
Ours 95.36 83.34 89.07

Euclidean similarity
D3FR 87.63 66.50 81.10
TDDFA 63.45 55.49 58.16
MGCNet 80.87 66.01 72.36
RingNet 80.05 69.46 72.40
Ours 94.47 80.78 86.40

Table 3: Face verification accuracy (%) on the LFW, CFP-FP and
YTF datasets. Our results are obtained using the weighted center
loss. We compare our results with 3DMM-CNN [TTHMM17], Liu
et al. [LZZ∗18], D3FR [DYX∗19], TDDFA [GZY∗20], MGCNet
[SSL∗20] and RingNet [SBFB19].

tity representations (usually based on the cosine distance or Eu-
clidean distance) is calculated to determine whether the images are
of the same person. In our evaluation, the shape parameters can
be used for identity representation, similar to the latent codes in
other face recognition methods. This evaluation method is not suit-
able for evaluating shape parameter discrimination because the Eu-
clidean distance between parameters can reflect the separation of
the face geometry while the cosine distance cannot. Therefore, we
directly use the Euclidean distance between 3DMM shape param-
eters to measure the similarity between two faces. For fairness, we
also show the results of using the cosine distance.

Results on testing benchmarks. As mentioned above, the shape
parameters must be able to minimize the intraclass distance and
maximize the interclass distance in Euclidean space. To evaluate
the effectiveness of SIR loss when learning the discriminative shape
parameters, we test the face recognition performance of the 3DMM
shape parameters on LFW, CFP-FP and YTF.

Ablation study. To validate the efficiency of each loss in our pro-
posed SIR term, we test face verification under various loss combi-
nations. As shown in Table 2, the face verification accuracy is very
low without any SIR loss terms. When we add the center loss in

w/o SIR w/o prior w/o center ours

Figure 5: The ablation study of SIR loss terms. ‘w/o’ SIR means
that we do not use the SIR term in training. ‘w/o’ prior means that
we do not use the KL loss in training. ‘w/o’ center means that we
do not use the weighted center loss in training.

0.0219SIR-D 0.0310 0.0339 0.0482

Figure 6: The samples of the user study on evaluating the SIR-D
metric. We present four images with different SIR-D values and ask
the participant to select the face shape which is most like the input
image.

addition to the cosloss, the accuracy increases significantly because
our evaluation method is based on the Euclidean distance between
parameters, while the center loss can reduce the Euclidean distance
between parameters belonging to the same class. The difference
in face verification accuracy between the center loss and weighted
center loss is subtle because the weighted center loss only makes
the class center closer to its neutral frontal face parameters. It up-
dates the center by assigning higher weights to the neutral frontal
face parameters. This operation does not significantly impact the
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0.1746 0.19760.1580 0.2132SIR-S

Figure 7: The samples of the user study on evaluating the SIR-S
metric. We present four images with different SIR-S values and ask
the participant to select the face shape which is most like the input
neutral frontal image.

Representation LFW CFP YTF

Parameter 94.47 80.73 86.40
Vertices 94.72 80.71 86.40

Table 4: The results of face verification (%) using different identity
representations. We use shape parameters and shape vertices as the
identity representation.

effect of face recognition but benefits face reconstruction, as shown
in Table 5.

Table 3 shows a comparison between our results and those of
other methods on LFW, CFP-FP and YTF. Note that the other meth-
ods may use the cosine distance to measure the parameter similar-
ity. However, the Euclidean distance between parameters can better
reflect the difference between geometries and is thus more appro-
priate to use Euclidean distance. For a fair comparison, we also
show the result of our method with the cosine distance.

To demonstrate that the SIR loss can transfer parameter discrim-
ination to geometric discrimination, we compare face verification
performance on LFW, CFP and YTF with the shape parameters
and reconstructed vertices as the identity representation. Table 4
shows that the discriminative property successfully transfers from
the parameter space to the geometric space. However, we use the
BFM model provided by 3DDFA, which deletes some vertices on
the original BFM model from PCA. Thus, the shape basis is not
strictly orthonormal and the face verification accuracy of vertices
has slight difference with the shape parameters.

(b)

OursBaseline(𝜀 1)Baseline(𝜀 20)Input

(a)

Figure 8: Comparisons to baseline models for feature separa-
tion and training convergence. (a) shows that how the pixel
loss(Equation(13)) and face recognition loss(Equation(19)) change
with the number of training iterations in the second stage of train-
ing. εs is used in Equation (9). The weights of the other losses re-
main the same. (b) shows the visualized reconstructed faces.

Method Tran et al. Lui et al. MGCNet D3FR
RMSE 2.27 2.00 1.94 1.82
Method RingNet TDDFA Ours-lc Ours-lwc
RMSE 1.84 2.01 1.82 1.80

Table 5: The face reconstruction error of Florence dataset.
We compare our method with Tran et al. [TTHMM17], Lui et
al. [LZZ∗18] and MGCnet [SSL∗20], D3FR [DYX∗19], TDDFA
[GZY∗20] and RingNet [SBFB19]. Our-lc represents that we use
center loss and our-lwc represents weighted center loss.

4.2. SIR-Score

The SIR-Score metric measures the recognizability of face shapes
from the following two aspects: distinguishability and separation,
respectively called SIR-D, SIR-S. The SIR-D reveals the distin-
guishability of the reconstructed face shapes, measured by KL di-
vergence:

LSIR−D = KL(P(α/σ | I,θ)‖N(0,1)) (24)

SIR-D M1 M2 M3 M4
Sorce 8.34 5.35 4.56 2.82
SIR-S N1 N2 N3 N4
Sorce 8.84 4.01 2.84 2.80

Table 6: The result of the user study on SIR-scores. M1-M4 are the
models with different SIR-D values from low to high. And N1-N4
are the models with different SIR-S values from low to high. These
scores are scored by the participants based on the recognizability
of the face shapes.
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Input MGCNet D3FR RingNet TDDFA Ours

2mm

0mm

Error Map

Error Map

Figure 9: Comparison of our qualitative results under various levels of illumination, various facial expressions, large poses, and occlusion
with MGCNet [SSL∗20], D3FR [DYX∗19], TDDFA [GZY∗20] and RingNet [SBFB19] on the LFW dataset. We use only shape parameters
to reconstruct the face geometries; thus, normalization occurs without expression and pose effects. The error maps reveal the Euclidean
distance between two shapes.

Method TDDFA MGCNet D3FR Ours
SIR-D 0.0194 0.0465 0.0353 0.0049
SIR-S 0.1758 0.1734 0 0.1661 0.1619

Table 7: The SIR score result of MGCNet [SSL∗20], D3FR
[DYX∗19], TDDFA [GZY∗20] and ours.

where α are shape parameters, σ is shape eigenvalue, I is the input
image and θ represents the network parameters. A small SIR-D
leads to face shape parameters with the same distribution as the
training dataset. The SIR-S reveals the separation of reconstructed

face shapes, which is the ratio of the inner-class Euclidean distance
to the inter-class Euclidean distance:

W =
1
n

k

∑
q=1

∑
x∈Cq

(x− cq)(x− cq)
T

B =
1
n ∑

i6= j
(ci− c j)

T

LSIR−S = W/B

(25)
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Error Map

4mm

0mm

Input MGCNet D3FR RingNet TDDFA Ours

Figure 10: Comparison of differences between two face shapes, which are regressed from images of different people. The last row presents
the error maps, which reveal the difference between the two face shapes by the MGCNet [SSL∗20], D3FR [DYX∗19], TDDFA [GZY∗20] and
RingNet [SBFB19]. We use only shape parameters to reconstruct the face geometries; thus, normalization occurs without expressions and
pose effects.

where Cq is the set of points of the class q, cq is the shape param-
eters regressed by its neutral frontal face of the class q, nq is the
number of points of the class q, k is the number of classes and n is
the number of samples.

To evaluate the effectiveness of the SIR-Scores when measuring
the reconizability of face shapes reconstructed from shape param-
eters, we conducted two user studies on SIR-D and SIR-S respec-
tively. 10 participants joined our user study. The participants are
five men and five women, ranging in age from 20 to 61 years old.
We calculated the SIR-Scores on Bosphorus dataset [SAD∗08] and
presented four reconstructed 3D models of one person using dif-
ferent SIR-D values and a fixed SIR-S value to the participants to
evaluate the SIR-D metric. Figure 6 shows the samples we used for
evaluating SIR-D. Each row presents the four face shape with dif-
ferent SIR-D values. Since SIR-D reflects the similarity between
the reconstructed shape parameter distribution and the prior distri-
bution, we find that smaller differences between face shapes pro-
duce larger SIR-D values and face shapes with the smallest SIR-D
value has the best visual result. For generating models with a fixed
SIR-S value, we multiplied various factors to the shape parameters.
We then show models of 100 different people and ask participants
to give each model a score from 0 to 10, where 10 means its identity
is the easiest to be recognizable visually, and 0 means the hardest.

Table 6 reports the mean score and shows that smaller SIR-D val-
ues means a better discriminativity. Figure 7 shows the samples of
our user study on the effect of SIR-S. Different rows are for the
same people with different poses and expressions. The last row is
the neutral frontal face image. We present the four models with dif-
ferent SIR-S values, where the SIR-D values are similar. We find
that the reconstructed face shapes are more stable and closer to the
meshes regressed from the neutral frontal face image with smaller
SIR-S values. In this user study, we generated samples of 20 differ-
ent people, where each person has ten different poses and expres-
sions. We asked participants to rate each mesh model by a score
from 0 to 10, where higher scores means that the identities of re-
constructed face shapes are the more stable for the different images
of the same person, and the face shapes are closer to the shapes
regressed from the neutral frontal face image. Table 6 reports the
mean scores for each model and shows that smaller SIR-S values
means a better stability. Table 7 reports SIR-scores for all the tested
methods, where ours is the best.

4.3. Quantitative Results on Shape Reconstruction

To evaluate the stability of our algorithm and the precision of the
reconstructed 3D face shapes, we calculate the RMSE between neu-
tral frontal 3D scans and 3D shape faces regressed from images un-
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Ringnet

MGCnet

Ours

D3FR

TDDFA

Figure 11: Comparison of our qualitative results with RingNet [SBFB19], MGCNet [SSL∗20], D3FR [DYX∗19] and TDDFA [GZY∗20].

Method TDDFA MGCNet D3FR Ours
SIR-D 0.747 0.677 0.696 0.640

Table 8: The quantitative result in LFW of MGCNet [SSL∗20],
D3FR [DYX∗19], TDDFA [GZY∗20] and ours.

der various conditions, including illumination, head pose, expres-
sion, and occlusion, on the Florence dataset [BDBM11].

Test on the Florence dataset. The MICC dataset contains the
2D/3D faces of 53 subjects, including two indoor videos, one out-
door video and the faces’ 3D models. The 3D face model of each
person includes one or two frontal faces with a neutral expression.
Unconstrained outdoor videos are recorded under natural lighting
conditions, which are more challenging. In our experiment, we
choose the outdoor video frames as the input and randomly select
100 frames of each subject to form a test dataset that contains 5,300

face images. In our preprocessing stage, the face and its landmarks
are detected by the MTCNN [ZZLQ16]. Afterward, the faces are
aligned using similarity transformation and cropped to 112×96 in
the RGB format. The ground-truth scans are cropped at a radius of
95 mm around the nose tip, and the meshes generated are aligned
to the ground truth using ICP with an isotropic scale.

When testing, we reconstruct only the shape of the face without
expressions. Table 5 reports the RMSE of the point-to-plane dis-
tance between the ground-truth face shape and reconstructed face
shape after ICP on an isotropic scale. Figure 4 shows the cumula-
tive error distribution (CED) curves of different methods.

As shown in Table 5, the reconstruction error of the weighted
center loss is lower than that of the center loss. The reason is that
the weighted center loss pushes the regressed shape parameters to
the values regressed from the corresponding neutral frontal face im-
age. The parameters obtained from neutral frontal face images are
more accurate than those of profiles and faces with extreme expres-
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sions. Therefore, using neutral frontal face parameters as the class
center can improve the accuracy of reconstruction accordingly. The
RMSE of our method on the Florence dataset is also lower than that
of other state-of-the-art methods. Note that some results are incon-
sistent with the results reported in their paper, since they ran their
methods on each frame of Florence’s videos and averaged each
video’s results to obtain a single reconstruction. Since the averag-
ing operation prevents the results from showing the reconstruction
stability, we evaluate those methods using the same approach as
presented above.

4.4. Qualitative Results on Shape Reconstruction

Ablation Study. Figure 5 shows reconstructed face shapes with dif-
ferent combinations of losses. As presented, some identity details
are missing without the SIR item. If we use identity loss without a
distribution prior, the identity discrimination in the parameter space
cannot be effectually transferred to the appearance space since the
norm the shape parameters would be small, leading to the recon-
struction of a mean face. The weighted center loss aggregates shape
parameters to the frontal face in Euclidean space. It improves the
reconstruction robustness to different face poses and facial expres-
sions. The last column of Figure 5 shows that the weighted center
loss helps strengthen the identity discrimination.

We compare our method with the baseline model, in which the
original structure of SphereFace [LWY∗17] is utilized. As shown
in Figure 8, the face recognition loss of the baseline model drops
faster than ours using the same loss weights, but their pixel loss
is much higher than ours. The visualization results of the recon-
structed faces are not satisfactory. If we reduce the weight of the
SIR loss to improve the face reconstruction performance, the face
recognition loss of the baseline model does not converge, and the
reconstructed face recognizability is also weakened.

To evaluate our reconstructed face’s stability and visual identifi-
ability under challenging conditions such as various types of illu-
mination, large poses, various expressions and occlusion, we com-
pare the qualitative results of estimating the face shape from a sin-
gle image in the LFW database obtained with MGCNet [SSL∗20],
D3FR [DYX∗19], TDDFA [GZY∗20] and RingNet [SBFB19]. As
Figure 9 shows, we choose images under four conditions: various
levels of illumination, various facial expressions, large poses and
occlusion.

Occlusion. As shown at the top of Figure 9, the woman’s hair oc-
cludes her cheeks. Thus, we cannot directly infer the shape around
the cheeks from the picture. Therefore, different orbital geometries
can easily be regressed if the constraints of face recognition are
not used, such as the result of MGCNet [SSL∗20]. The SIR term
can aggregate the same person’s features and infer the geometric
information of the occluded part.

Expression. The final geometry is affected by both of the face
shape and its expression, which means that the same face geometry
can be determined by different combinations of face shapes and ex-
pressions. The same person with different expressions may regress
varying face shapes. As shown at the top of Figure 9, for the case
of smiling, the other methods have some errors in the mouth area,
while our reconstruction results remain stable.

Pose. Large poses result in some information loss regarding the
face shape due to self-occlusion. As shown at the bottom of Figure
9, the face contour is difficult to estimate. However, the SIR term
can push the regression parameters from the profile to the parame-
ters regressed from the frontal face and infer the missing informa-
tion.

Illumination. As shown in the top row of Figure 9, the contour
of a face could be unclear due to inappropriate illumination. Sim-
ilar effects could be caused by some special poses or occlusion,
where some shape information is lost. SIR loss can infer the lost
information for the reason described above.

We also conduct the quantitative evaluation on the LFW dataset
using the ratio of RMSE between pairs of images with the same
identity and between pairs with different identities:

W =
1
ns

∑
i∈Cs

| |Si1−Si2||

B =
1
nd

∑
j∈Cd

|
∣∣S j1−S j2|

∣∣
L = W/B

(26)

where Cs is the pair of the same identity pair in LFW test bench-
mark and Cd is the pair with different identities. S∗ is the recon-
structed face shape. ns is the number of the pairs with the same
identity and nd is the number of the pairs with different identities.
Table 8 shows that our method has the best performance.

In addition, the reconstructed face shapes of the same person
in different environments should be the same. The face shapes re-
constructed for different people, however, need to differ from each
other. Figure 10 shows the difference in the reconstructed shapes
from different people. It shows that the face shapes reconstructed
by other methods are similar. In contrast, our result presents the
expected differences.

Figure 11 shows a qualitative comparison between our method
and other state-of-the-art methods. Different from RingNet
[SBFB19], TDDFA [GZY∗20], our results maintain the iden-
tity feature of rhe input images. MGCNet [SSL∗20] and D3FR
[DYX∗19] use photometric metrics and can effectively capture the
identity feature of the input image. However, they produce poor re-
sults when the faces have extreme expressions and large poses as
shown in the second and fourth columns in Figure 11). In contrast,
our method can capture identity features under challenging condi-
tions due to the benefits from our identity losses.

5. Conclusions

Our research started from the observation that despite the high
face recognition accuracy obtained using the 3DMM shape pa-
rameter, the reconstructed 3D face shapes are lack of significant
visual discrimination. We first explored the relationship between
the between 3DMM parameter space and 3D geometric space, and
propose SIR losses that explicitly enforce shape consistency in the
shape parameter space while implicitly guiding reconstructed face
shapes to be visually discriminative. In detail, the identification
loss explicitly maximizes the interclass and minimizes the intra-
class Euclidean distance of shape parameters while it implicitly
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maximizes/minimizes the MSE of the shape geometry of different
people/the same person. Kullback–Leibler losses are also utilized
to explicitly constrain the shape parameters to follow a particular
distribution and implicitly let them to share the same visual dis-
tinction as the shapes used to train the 3DMMs. We build a neu-
ral network and an associated training strategy to cope with the
lack of such a dataset that contains both identity and 3D geom-
etry annotations, which can quickly converge under our training
strategy. Finally, we propose the SIR-score metric to evaluate the
recognizability of face shapes. The experiments show that our re-
sults outperform those of the state-of-the-art methods in terms of
the reconstruction error, visual discrimination, and face recognition
accuracy.
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