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Cross360: 360° Monocular Depth Estimation via Cross Projections
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Abstract—360° depth estimation is a challenging research
problem due to the difficulty of finding a representation that
both preserves global continuity and avoids distortion in spherical
images. Existing methods attempt to leverage complementary
information from multiple projections, but struggle with bal-
ancing global and local consistency. Their local patch features
have limited global perception, and the combined global repre-
sentation does not address discrepancies in feature extraction
at the boundaries between patches. To address these issues,
we propose Cross360, a novel cross-attention-based architecture
integrating local and global information using less-distorted
tangent patches along with equirectangular features. Our Cross
Projection Feature Alignment module employs cross-attention to
align local tangent projection features with the equirectangular
projection’s 360° field of view, ensuring each tangent projection
patch is aware of the global context. Additionally, our Progressive
Feature Aggregation with Attention module refines multi-scaled
features progressively, enhancing depth estimation accuracy.
Cross360 significantly outperforms existing methods across most
benchmark datasets, especially those in which the entire 360°
image is available, demonstrating its effectiveness in accurate
and globally consistent depth estimation. The code and model
are available at https://github.com/huangkun101230/Cross360.

Index Terms—360° depth estimation, panoramic image, cross
projections, cross attention.

I. INTRODUCTION

A 360° image offers comprehensive environmental informa-
tion by covering an entire field of view (FoV) of 180° x 360°.
This extensive coverage has generated significant research
interest in various areas, including depth estimation [1]-[7],
optical flow prediction [8]-[10], and surface normal estimation
[11]-[13]. The most common representation of a 360° image
is the equirectangular projection (ERP) [14], which introduces
significant distortions and presents challenges for understand-
ing scene information [15], [16].

Recent methods [1], [2], [7] that adopt multiple projections
for 360° depth estimation have shown promising results by
exploring the complementary information provided by each
projection. BiFuse [6] and HRDFuse [5] leverage local patches
generated by cube map projection (CP) and tangent projection
(TP) to learn regional structural features and use the ERP
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image to mitigate the spatial discontinuity of the patch-based
features. However, one significant issue of these methods is
only exploring information within the limited FoV of a patch
when learning local features, which restricts the capability of
understanding intricate scene details and leads to fragmented
understanding. Although the ERP-based features provide a
global view to combine local features, the descriptions of
neighboring patches still lack continuity and coherence in the
final representation. Existing padding [6], [17] or fusion [2],
[5] techniques were proposed to address this issue, but they
often fail to achieve optimal performance.

In this paper, we introduce Cross360, a novel method
that effectively integrates local and global information when
learning scene features. We explore relationships between the
patches of the less-distorted tangent projection and the global
scene represented by the equirectangular projection. The ERP
features, with their full (180° x 360°) FoV, provide a holistic
understanding at a coarse level and identify broad patterns and
relationships. Conversely, the TP patches in the limited-FoV
focus on local finer regions, capturing detailed patterns and
textures. To ensure each TP patch is aware of global contexts
and scales, we propose a Cross Projection Feature Alignment
(CPFA) module that employs a cross-attention mechanism
to align the limited-FoV local TP patch features with the
full-FoV ERP representations. Unlike prior ERP/TP fusion
frameworks that simply concatenate or self-attend within a
single projection, our architecture performs multi-level cross-
projection alignment at every decoder stage. CPFA explicitly
exchanges information between TP and ERP features so that
each TP patch incorporates the entire ERP context, enabling
the learning of both local and global receptive representa-
tions and ensuring smooth transitions and continuity across
projections. Furthermore, we introduce a Progressive Feature
Aggregation with Attention (PFAA) module, which aggregates
multi-scale features from small to large using attention maps.
This module progressively refines the final representation and
predicts the 360° depth map, allowing Cross360 to attend to
various levels of detail and capture complex visual information
across multiple scales. In addition, the slightly overlapping
TP patch layout together with bidirectional ERP-TP trans-
formations keeps neighboring patches geometrically consis-
tent, which effectively alleviates boundary artifacts. Together,
these components form a hierarchical architecture that delivers
superior global consistency and significantly improves depth
estimation accuracy.

We conduct extensive experiments on four commonly
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used datasets: Matterport3D [18], Stanford2D3D [19], Struc-
tured3D [20] and 3D60 [21], evaluating our method against
the latest depth estimation approach for both perspective
and 360° images. Our approach substantially exceeds the
performance of current state-of-the-art (SOTA) methods across
most datasets, especially when the full regions of 360° images
are available. Our main contributions are:

1) We present Cross360, a 360° monocular depth estima-
tion method that addresses distortion and discontinuity
issues through cross-attention across projections and
scales. Our approach achieves state-of-the-art perfor-
mance with the complete 360° images are available.

2) We propose a CPFA module that utilizes a cross-
attention mechanism to align limited-FoV local patch
(TP) features with full receptive fields (ERP), enabling
the learning of local and global receptive representations
across both ERP and TP domains.

3) We introduce a PFAA module that aggregates multi-
scale features from the CPFA module using attention
maps, refining the final representation and outputting the
360° depth predictions.

II. RELATED WORK

We review prior work in two categories. The first category,
360° depth estimation, encompasses methods designed to pre-
dict depth from various 360° projection formats. These studies
differ in how they handle the intrinsic challenges of 360°
imagery, such as spherical distortion, seam discontinuities
between patches, and global context modeling. The second
category, cross-attention mechanisms, covers approaches that
align or fuse features across distinct domains or scales. These
techniques provide the foundation for our proposed CPFA
module, which requires effective interaction between tangent
patch and ERP features.

A. 360° Depth Estimation

The monocular 360° depth estimation task typically uses
360° images in the ERP format as input, capturing omnidirec-
tional information for the entire scene. However, ERP images
present two well-known challenges: distortion and discontinu-
ity. To address these issues, researchers have explored various
approaches.

Since conventional convolutional neural network (CNN)
kernels are designed for the perspective images and are in-
efficient at overcoming distortion, several methods [22]-[25]
have focused on mitigating severe distortion by proposing
distortion-aware kernels, and algorithms [26], [27] further
apply the deformable convolutional network to learn an offset
of the spherical distortion. These kernels adjust the receptive
fields of the CNN according to the latitude of the sphere when
extracting features. A previous work [28] adopts such spherical
kernels for stereo omnidirectional depth estimation tasks via
the linear epipolar constraint on the spherical surface. While
some methods transform spherical maps to other domains
using schemes such as pixelization [29], [30] or the icosahe-
dral polyhedron representation [31], [32], incorporating cor-
responding CNN feature extraction strategies, a recent study

[33] focuses on the sphere surface. It proposes an independent
spherical kernel for each point based on its eight equidistant
neighbors on the closest outer circle on the sphere to preserves
geometric properties and minimizes the discontinuity issue.

Many algorithms estimate 360° depth maps through various
projection techniques. For example, PanoDepth [34], HoHoNet
[35], and ACDNet [36] use the ERP image as input and aggre-
gate features to predict the 3D scene. SliceNet [37] divides the
ERP image vertically on the sphere to investigate the spatial
relationships among slices without employing a transformer
mechanism. In contrast, PanelNet [38] incorporates geometric
embedding with multi-head self-attention, and EGFormer [39]
applies attention to both horizontal and vertical slices to
enhance the network’s ability to capture spatial dependencies
across different directions. To address the distortion issue,
SalNet360 [40] converts the ERP input with CP for dense
predictions on less distorted surfaces, then unfolds them back
to the ERP domain. Following the work [16] of transferring the
ERP image with TP, 360MonoDepth [41] and OmniFusion [2]
investigate depth prediction on tangent patches and fuse them
back to the complete ERP image. PanoFormer [4] uses a U-
shaped transformer [42] to find global dependencies among
the tangent patches. While some works [17] propose CP image
padding methods to improve connectivity between faces, other
algorithms such as GLPanDepth [43], BiFuse++ [7], UniFuse
[3], and BiFuse [6] incorporate a second image projection
format (ERP) with CP, and HRDFuse [5] combines TP for
gathering more comprehensive global information, addressing
discontinuity among patches and fine-grained details within
the non-distorted patches simultaneously. Recently, Elite360D
[1] fuses the icosahedron geometric information to provide
spherical information, and SGFormer [44] integrates spherical
geometric priors into vision transformers through bipolar re-
projection and curve-local embedding. Other works [33], [45],
[46] adopt teacher—student frameworks to exploit large sets
of pseudo-labeled data. PanDA [46] adapts Depth Anything
V2 [47], [48] to spherical imagery and achieves state-of-
the-art results, but it requires about 120k 360° images (20k
labeled and 100k unlabeled), making a direct comparison
with our method unfair due to the much larger training
set. DepthAnyWhere [45] follows a similar teacher—student
strategy using Depth Anything [47] to generate pseudo labels
and likewise depends on substantially more pseudo-labeled
data than the ground-truth annotations in our benchmarks, so
a direct metric comparison would also be inequitable. Unlike
these teacher—student approaches that rely on massive pseudo-
labeled datasets, Cross360 utilizes both ERP and TP projec-
tions, each in its own format, and employs cross-attention
to align features between these projections. This strategy
captures detailed local information from the TP patches while
simultaneously modeling global dependencies from the ERP
representation, allowing us to learn robust and geometry-
aware features without requiring additional large-scale pseudo
supervision.

B. Cross-attention

Cross-attention is widely used to capture efficient features
across different patch scales or feature domains. For instance,
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Fig. 1. Framework Overview: Cross360 estimates 360° depth through three main components: an ERP-based feature encoder, Cross Projection Feature

Alignment (CPFA), and Progressive Feature Aggregation with Attention (PFAA). The CPFA module aligns TP and ERP features, which are then concatenated
with skip-linked ERP features and passed to the decoder. The decoder generates features at each level, used for multi-scale supervised learning and passed
to the next CPFA level. The PFAA module processes all decoder features to produce the final depth map. Note that, multi-scale depth predictions during the

decoding stage are not shown for better visualization.

CrossVit [49] introduces two branches that simultaneously
produce small-patch and large-patch tokens, learning a multi-
scale representation. Similarly, CAT [50] employs hierarchical
attention between patches and within each patch. Furthermore,
CCNet [51] proposes a lightweight transformer that aggregates
global dependencies pixel-wise by utilizing information from
each pixel in both horizontal and vertical directions. Addi-
tionally, AutoAlign [52] introduces a cross-attention feature
alignment module to learn a map that aligns features between
2D images and 3D point clouds for 3D object recognition.
Recently, S2Net [53] applies the Swin transformer [54] and
HEALPix [55] to sampling pixels for extracting features from
the ERP domain and models global dependencies with features
from the spherical domain. In our approach, we introduce the
CPFA module to establish relationships between each tangent
patch that is derived from the ERP image, and the extracted
ERP features. The CPFA module enables each tangent patch
to gain a comprehensive understanding of the global context,
while still preserving the local details within the image.
This dual capability ensures that each patch can seamlessly
integrate holistic image information without losing the specific
characteristics of either local or global regions.

III. METHODOLOGY
A. Overview

The framework of Cross360 is illustrated in Fig. 1, which
takes an ERP image and a set of TP images (converted from
the ERP image) as inputs, and outputs the predicted depth
map. It comprises three main components: ERP-based feature
encoder, CPFA, and PFAA. Our goal is to effectively utilize
the complementary information from both local and global
feature representations at varying scales, which is crucial for
accurate 360° depth estimation with minimized distortion and
discontinuity issues.

The ERP-based feature encoder takes an ERP image and
extract hierarchical feature representations FEEP across dif-
ferent scales from s = 1 to S, where s = S is the finest
resolution (by default, we set S = 5). To mitigate distortion in
the ERP image, CPFA modules are leveraged to align feature

representations from the TP patches and ERP images. As
shown in Fig. 1, the process involving TP images begins by
feeding the patches into the coarsest-scale CPFA module. At
this scale, the CPFA module applies self-attention to a set
number, N (by default, we set N=26), of the embedded TP
patches, ensuring that the local feature maps {FnT P }n:L.»-, N
are well-represented and contextualized without distortion.
Next, CPFA employs a cross-attention mechanism to align the
TP features with the global context from the ERP features at
the corresponding scale, enhancing local feature maps to cap-
ture complementary structural information. The aligned cross-
projection feature map F'C4 is then transformed into the ERP
domain, concatenated with the skip-linked ERP features, and
fed into the convolutional decoder at scale s. The decoded fea-
ture {FP }s=1,..,s—2 is subsequently processed by the CPFA
module of the next scale. Notably, except for the coarsest and
finest scale, the CPFA module at scale s takes the tangent
patches of F¢4 to calculate cross-attention with FFRP, The
decoded features across all scales, {FSD }s=1,..,s—1, are also
used to predict depth maps at various scales for multi-scale
supervision. At the finest scale of the decoder, it takes the
previous scale’s feature and FSEZ%P to generate FSD= g- The
decoded features {FP},_; ¢ then proceed to the PFAA
module, which progressively integrates the most relevant in-
formation from different scales, ultimately producing the final
depth prediction results at the finest resolution. The details are
as follows.

B. ERP-based Feature Encoder

The ERP-based feature encoder extracts features FERF ¢
Rexhxw at each scale s from the input ERP image of size
3x Hx W, where h = H/2%7 % w = W/2%%, and c
is the number of feature channels. Our encoder comprises
a convolutional block for extracting fine-grained details at
the finest resolution of H x W and a pre-trained ResNet34
[56] block for features at smaller scales. Compared to using
ResNet34’s pooling layers to downsample the original scale,
the added convolutional block avoids losing the finest-level
appearance information. With the ERP encoder, the 360° input
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Fig. 2. The architecture of Cross Projection Feature Alignment module.

is treated as a single, unified entity to capture features, com-
pensating for better continuous details rather than distortion-
free but patchified information. This also allows our encoder to
incorporate any existing pre-trained backbones, offering flex-
ibility and potential performance improvements with popular
models. However, these pre-trained 2D perspective backbones
still suffer from spherical distortions (see DepthAnything and
ASNGeo in Table II), and thus, can only be used to provide
the initial feature representations.

C. Cross Projection Feature Alignment

We employ several CPFA modules in our network at various
scales to align TP-based features with ERP-based features via
cross-attention. At each level, the aligned feature map F¢4
is then converted to ERP format and concatenated with the
corresponding ERP features FERY for subsequent decoding.
The decoded feature FP is then upsampled and transformed
back into TP patches for cross-projection alignment at the next
scale. A CPFA module’s structure is shown in Fig. 2.

1) ERP2TP and TP2ERP: Projecting 360° inputs onto
tangent planes minimizes spherical distortion while preserving
geometric properties. The ERP2TP transformation converts
equirectangular images to perspective-like patches by project-
ing spherical coordinates onto tangent planes [2], [5], [16].
The inverse TP2ERP transformation maps processed patches
back to the spherical format using inverse spherical projection
and interpolation. Following OmniFusion [2], we use tangent
patches transformed from the ERP format via gnomonic
projection [57]. We also use a non-uniform patch sampling
strategy on the ERP image to ensure equal coverage of the
spherical content. Therefore, we sample fewer patches near the
poles to prevent excessive overlap. We use a set of N = 26
tangent patches for a balance of speed and performance (refer
to our ablation study). Tangent patches are sampled at five
different latitudes: —72°, —36°, 0°, 36°, 72°, with 3, 6, 8, 6, 3
patches respectively. All tangent patches have a uniform 72°
FoV, but each patch is sampled at four different resolutions—4,
8, 16, and 24 pixels in height and width—creating a multi-
resolution hierarchy. The 4 x 4 resolution corresponds to the
image domain, while the 8, 16, and 24 levels operate in the
feature space.

2) Self-attention among Tangent Patches: After sampling
a set of TP patches, we process them through a multi-head
self-attention (MHSA) block [58]. The MHSA enables the
model to effectively capture contextual relationships among

the tangent patches, leveraging the strengths of self-attention
to focus on local details within the patches while facilitating
interactions between different patches. The output feature 7,7
from this block will be used as the query for a subsequent
cross-attention module.

3) Cross-attention among Projections: Previous methods
such as BiFuse [6] and UniFuse [3] integrate feature maps
between ERP and CP by transforming the ERP image into CP
patches or vice versa, based on their geometric relationships.
OmniFusion [2], in contrast, uses a self-attention mechanism
to capture intricate information among TP patches. While
these methods effectively achieve pixel-wise feature matching
across projection domains, their performance is limited by two
main issues: First, each geometry-transformed CP or TP patch
has a limited FoV, lacking global perception. Second, these
projections focus on detailed information within each patch
without accounting for neighboring patches, leading to a lack
of continuity. Although some padding or fusion techniques
have been proposed to address this issue, the performance
remains constrained.

To address these issues, our CPFA module leverages precise
geometric transformations to match ERP and TP feature
maps while overcoming the aforementioned limitations. As
illustrated in Fig. 2, after obtaining the ERP features FFEP
and the TP features Tg P from the self-attention block, we use
the Switchable Normalization module [59] to learn the weights
of channel-wise, layer-wise, and batch-wise normalization,
flexibly selecting the most effective strategy for different
components and the information from different projections.
Note that, only at the coarsest scale are TP images directly
fed into the CPFA. For each of the subsequent scales, the
aligned feature map from the previous scale, initially in ERP
format, is transformed into tangent patches for cross-attention
(CA) at the current scale. Given the normalized feature maps,
we generate the query ¢ from each patch-wise feature 777
and produce the key k& and value v from the entire ERP
feature map FZFRP with corresponding resolution sizes. We
then calculate the attention map A based on ¢ and %, and
obtain the projection-aligned feature with F¢4 = A - v. This
process can be formulated as:

q=TI'".W,,
A = softmax(q - k1),

k:FERP~Wk7 ”U:FERP~WU
FOA = CA(FTP FERP)y = A .y

(1
where W,, W, W, are learnable parameters. Note that gener-
ating the attention map in our cross-attention is more efficient
than in all-attention, as the computation and memory com-
plexity are linear rather than quadratic.

4) Decoder: At each scale (except the finest scale), the
output of the CPFA module is concatenated with the skip-
linked ERP features and processed by the corresponding layer
of our decoder to produce the decoded feature maps, denoted
as {FP }s=1,..,s—1. This concatenation combines both the
skip-linked ERP input and the CPFA output to facilitate
comprehensive feature representation for the entire image. The
resulting feature maps are upsampled and projected from the
ERP domain to tangent planes, generating tangent feature map
patches that are then fed into the CPFA module at the next
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scale.

For the finest scale, we directly use the concatenation
of the previous decoder’s feature map F”, and the finest
ERP feature map FEZP as input, producing the feature map
for this final resolution F” . The stacked decoded fea-
tures {FSD }s=1,....s across multiple scales effectively integrate
global and local geometry and appearance features. These
feature maps are subsequently passed to the final feature
aggregation stage to predict the full-resolution depth map and
are also used for multi-scale supervision by presenting depth
maps at different scales through output layers.

D. Progressive Feature Aggregation with Attention

The PFAA module takes the set of multi-scaled decoded fea-
tures {FP},_1, s from the decoders, gradually aggregating
features across scales to refine and enhance the final represen-
tation based on the most relevant features at each scale, and
outputs the final depth map estimation. Attention maps help
the model progressively integrate selected information from
different scales, thereby improving performance. As shown in
Fig. 3, the attention maps {FACYS},_; 5 for the decoded
features of each scale are calculated via an Attention Cross
Scale (ACS) block, Fs. The process begins with the smallest
scale feature map, where the input feature map for the next
scale is derived solely from the ACS block. Subsequently,
the attention information is added to the features of the next
scale, serving as the input for the following ACS block. This
approach adaptively refines features by emphasizing relevant
channels, resulting in more effective integration of information
across different scales and ultimately enhancing performance.
This approach is detailed in the following formulation:

F{S = Fy(FP) - FP

FACS = F,(FP + FASS) . (FP + FAS) s = 2,...,8
2

E. Optimization

Due to Cross360’s capability to effectively learn geometric
and appearance features across the spherical domain, we use
the output features from the decoder {FP}._; ¢ i and
PFAA modules FASS, passing them to the specific convo-
Iutional layers (Conv) to predict depth maps D, at various
scales, which can be formulated as follows:

Ds=Conv(FP),s=1,...,5 -1
D, = Conv(FACS) s =8

For the Matterport3D, Structured3D, and 3D60 datasets,
our experimental results show that the following settings
are more effective. We employ a combination of MSE loss
Lmse and gradient loss L,qq for multi-scale pixel-wise depth
supervision with ground truth D,, which are defined as:

3)

S N
Linse = ZHD;_D2H2 “4)

s=11i=1

) ®

i

S 1 N
Lgrad = ; N; ()|VD§| - |VD§‘
where N is the total number of pixels, and V represents
the gradient operations implemented as convolutions with the
Sobel kernels. The total 1oss Lotq; iS:

‘Ctotal = Emse + Egrad- (6)

For Stanford2D3D dataset, which contains significantly less
training data, we follow previous works [1], [4] and adopt
the reverse Huber loss [60] Lper ., to supervise multi-scale
pixel-wise depth loss and gradient loss.

IV. EXPERIMENTS AND RESULTS

We validate our method using four benchmark datasets: two
real-world datasets, Matterport3D (M3D) [18], Stanford2D3D
(S2D3D) [19], and two synthetic datasets, Structured3D
(Struct3D) [20] and 3D60 [21]. We compare our method with
SOTA approaches, including methods designed for perspective
images, DepthAnything [47] and ASNGeo [61], and 360°
depth estimation methods. For real-world benchmarks (Table
I), we report results following established evaluation protocols
(e.g., UniFuse, PanoFormer and Elite360D) to ensure direct
comparability with published SOTA numbers. In contrast, for
synthetic datasets (Table II), we retrain all baseline meth-
ods from scratch using official code and hyperparameters
to guarantee a fair comparison under identical conditions.
Additionally, we conduct an ablation study to evaluate key
components of our approach.

A. Evaluation Metric, Datasets and Hardwares

We evaluate depth estimation performance using three error
metrics: absolute relative error (Abs Rel), Squared Relative Er-
ror (Sq Rel) and Root Mean Square Error (RMSE) along with
three accuracy metrics. These accuracy metrics measure the
percentage of pixels where the ratio (§) between the predicted
depth and ground truth is less than 1.25%, 1.252, and 1.253.
For the real-world datasets, Matterport3D and Stanford2D3D,
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we follow the experimental settings used in previous works
[11, [3], [4]. All methods on these two datasets are evaluated
using the datasets’ standard test ERP images, which inherently
contain missing regions at the top and bottom. We provide
every method with the same masked ERP inputs without
any padding or inpainting, and compute all metrics strictly
on the valid pixels specified by the dataset’s ground-truth
masks. For the synthetic datasets, Structured3D and 3D60,
we retrain previous models under their respective settings to
further evaluate their performance, particularly in handling the
most distorted regions in the ERP format. All experiments are
conducted under consistent experimental settings for fairness,
and we performed our method using a single Intel Xeon W-
2133 CPU core and an NVIDIA RTX 3090 GPU.

B. Training Details on Real-world Datasets

Matterport3D and Stanford2D3D are widely used real-
world 360° ERP datasets, offering high-resolution and detailed
indoor data. However, both datasets contain missing regions
at the top and bottom of images due to camera limitations
restricting the vertical field of view or the deliberate exclusion
of irrelevant noise. While some existing methods [3], [6]
are minimally affected by this vertical incompleteness, our
CPFA module is more sensitive to it. The CPFA module
identifies interactions between TP patches and aligns them
with the global ERP context using cross-attention. When
the ERP image has black regions at the poles, the network
may learn ineffective features, disrupting the global geometric
relationships between TP patches and ERP regions.

To address this issue, we modify the extracted TP and ERP
feature maps by removing invalid regions, ensuring that the

(b) Clipped ERP input

network focuses on meaningful information. Specifically, for
datasets with complete fields of view, we sample N = 26 TP
patches across five latitudes (—72°, —36°,0°, 36°, 72°) with 3,
6, 8, 6, and 3 patches per row, respectively (as shown in Fig.
4a). However, for datasets with missing regions at the poles,
we adjust the sampling strategy by excluding affected latitudes
and modifying patch distributions. In such cases, patches are
sampled at —31.2°,0°,31.2°, with 6, 8, and 6 patches per row,
respectively (Fig. 5a). Additionally, we rotate the sampled TP
patch centers away from the missing regions to maximize valid
data utilization.

These modifications allow our CPFA module to maintain
effective global feature alignment despite vertical incomplete-
ness. Table I presents quantitative results demonstrating the
impact of these adjustments on real-world datasets. Further-
more, to validate our approach under fully covered ERP
inputs, we conduct additional comparisons using synthetic
datasets, which provide complete environmental information,
particularly in the most distorted ERP regions (Table II).

C. Comparison with the state-of-the-art

1) Comparison on Incomplete Real-world Datasets: Ta-
ble I presents a quantitative comparison on the real-world
Matterport3D and Stanford2D3D datasets, using incomplete
ERP images as inputs. The results demonstrate that Cross360
achieves superior performance on Matterport3D across all
evaluation metrics. For example, with a ResNet-34 back-
bone, our Cross360 outperforms the most recent state-of-the-
art method, Elite360D, with gains of 14.35% in Abs Rel,
22.76% in Sq Rel, and 14.61% in RMSE. On the small-
scale Stanford2D3D dataset, Cross360 achieves comparable
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TABLE 1
QUANTITATIVE COMPARISONS AGAINST SOTA METHODS ON REAL-WORLD DATASETS. INPUTS COVER INCOMPLETE FOV ALONG THE VERTICAL
DIRECTION.

Dataset | Method | Pub’Year | Params (M) | AbsRel | SqRel | RMSE | | 61(%) 1T 62(%) 1 63(%) T
EGFormer [39] ICCV’23 15.39 0.1473 0.1517 0.06025 81.58 93.90 97.35
PanoFormer [4] ECCV’22 20.38 0.1051 0.0966 0.4929 89.08 96.23 98.31
BiFuse [6] CVPR’20 56.01 0.1126 0.0992 0.5027 88.00 96.13 98.47
BiFuse++ [7] TPAMI’22 52.49 0.1123 0.0915 0.4853 88.12 96.56 98.69

M3D UniFuse [3] RAL21 50.48 0.1144 0.0936 0.4835 87.85 96.59 98.73
OmniFusion [2] CVPR’22 42.46 0.1161 0.1007 0.4931 87.72 96.15 98.44
HRDFuse [5] CVPR’23 46.31 0.1172 0.0971 0.5025 86.74 96.17 98.49
Elite360D [1] CVPR’24 25.54 0.1115 0.0914 0.4875 88.15 96.46 98.74
SGFormer [44] TCSVT’25 - 0.1039 0.0865 0.4790 89.46 96.42 98.59
Ours - 67.84 0.0955 0.0706 0.4163 90.78 97.11 98.88
EGFormer [39] ICCV’23 15.39 0.1528 0.1408 0.4974 81.85 93.38 97.36
PanoFormer [4] ECCV’22 20.38 0.1122 0.0786 0.3945 88.74 95.84 98.59

$2D3D OmniFusion [2] CVPR’22 42.46 0.1154 0.0775 0.3809 86.74 96.03 98.71
UniFuse [3] RAL21 50.48 0.1124 0.0709 0.3555 87.06 97.04 98.99
Elite360D [1] CVPR’24 25.54 0.1182 0.0728 0.3756 88.72 96.84 98.92
SGFormer [44] TCSVT’25 - 0.1040 0.0581 0.3406 89.98 96.93 99.08
Ours - 67.84 0.1211 0.0740 0.4042 85.66 97.09 99.13

GT Ours

Elite360D UniFuse

Fig. 6. Qualitative comparison results on Matterport3D and Stanford2D3D datasets. We compare our predicted depth maps against Elite360D [1] and UniFuse
[3], highlighting key differences with colored rectangles. The results are visualized as 2D images and 3D point clouds, incorporating both RGB data and

depth maps for a more comprehensive analysis.

performance to PanoFormer [4] and UniFuse [3] but leads
with the highest accuracy scores, reaching 97.09% on d, and
99.13% on 03, which reflects our model’s robust accuracy.
These results further indicate that, despite being designed to
exploit full-sphere context, our method remains highly robust
when parts of the ERP are missing. By combining adaptive
tangent-plane sampling with masked supervision, Cross360
maintains state-of-the-art accuracy even with the incomplete

top and bottom regions commonly found in real-world panora-
mas, while still benefiting from full 360° coverage when it is
available. The limited size of the Stanford2D3D dataset con-
strains our model’s ability to fully capture global contextual
relationships, which are essential for our transformer-based
network. While other attention-based methods [4] are less
affected by incomplete ERP inputs, our approach is designed
for complete depth prediction across all ERP regions, making
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TABLE II
QUANTITATIVE COMPARISONS AGAINST SOTA METHODS ON SYNTHETIC DATASETS. INPUTS COVER THE ENTIRE FOV OF THE SCENE.

Dataset | Method | Pub’Year | Params (M) | AbsRel | SqRel | RMSE | | 61(%) 1 82(%) T 63(%) 1
UniFuse [3] RAL21 30.26 0.0535 0.0279 0.1365 96.89 98.76 99.27
PanoFormer [4] ECCV’22 20.38 0.0551 0.0226 0.1361 96.70 98.80 99.34
HRDFuse [5] CVPR’23 46.31 0.0575 0.0299 0.1493 96.36 98.54 99.16

Struct3D GLPanoDepth [43] TIP 24 120.32 0.0520 0.0219 0.1267 96.86 98.82 99.35
DepthAnything [47] CVPR’24 343.04 0.0825 0.0382 0.1969 94.07 9791 98.89
ASNGeo [61] TPAMI’ 24 89.56 0.0802 0.0332 0.1862 94.41 98.26 99.13
Ours - 67.84 0.0361 0.0127 0.1030 97.88 99.25 99.63
UniFuse [3] RAL21 30.26 0.0720 0.0373 0.3012 94.51 98.87 99.64
PanoFormer [4] ECCV’22 20.38 0.0617 0.0213 0.2234 96.65 99.41 99.80
HRDFuse [5] CVPR’23 46.31 0.0729 0.0333 0.2911 94.72 98.92 99.62

3D60 GLPanoDepth [43] TIP 24 120.32 0.0673 0.0266 0.2535 96.00 99.30 99.79
DepthAnything [47] CVPR’24 343.04 0.1064 0.0781 0.4343 89.12 97.26 98.96
ASNGeo [61] TPAMI’ 24 89.56 0.0837 0.0390 0.3305 93.24 98.68 99.59
Ours - 67.84 0.0526 0.0177 0.2121 97.40 99.55 99.86
M3D S2D3D Struct3D

Al

Input

Ours PanoFormer Ours
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Fig. 7. Qualitative comparison results from synthetic datasets (Structured3D and 3D60). We compare our predicted results against various methods. All depth
maps use a consistent visualization style, and the regions highlighted by rectangles illustrate our model’s superior geometric understanding of the scenes.

More comparisons can be found in the supplementary materials.

it more sensitive to missing and highly distorted areas.

Fig. 6 presents qualitative comparisons of depth predictions
from our method, Elite360D [1], and UniFuse [3], alongside
ground truth. The results are visualized as 3D point clouds,
with red rectangles highlighting key regions. For the results
from Matterport3D, our approach accurately captures hollow
areas in structures like handrails and windows (bottom right),
whereas other methods misinterpret these regions as solid
planes. Similarly, for Stanford2D3D, our model demonstrates
a better understanding of overall room geometry, correctly
predicting walls and surfaces where Elite360D and UniFuse
fail to distinguish structural elements.

2) Comparison on Complete Synthetic Datasets: To further
validate our method’s performance with complete ERP inputs,
we present quantitative results in Table II. As shown, Cross360
significantly outperforms SOTA methods on both the Struc-

tured3D and 3D60 datasets. For a fair comparison, we retrain
all competing methods using their official hyperparameters,
identical data splits, and a consistent range scale (e.g., a max-
imum depth of 10 meters). We also apply an early-stopping
strategy, terminating training at the 15th epoch if no further
improvement is observed. For DepthAnything [47], which is
pre-trained on a large-scale dataset, we use its provided pre-
trained model and fine-tune it on the 360° datasets, following
the same training strategy.

On the Structured3D dataset, a synthetic dataset featuring
diverse samples, varied lighting, and accurate ground-truth
data, our Cross360 demonstrates exceptional performance
across all metrics, achieving improvements over the current
SOTA method, GLPanoDepth [43], with 30.58% in Abs Rel,
42.01% in Sq Rel, and 18.71% in RMSE. Additionally, our
model has 43.62% fewer parameters than GLPanoDepth, mak-
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TABLE III
ABLATION STUDY OF INDIVIDUAL COMPONENTS (3D60 TEST SET).

Method | AbsRel | RMSE | | &1 621
Baseline 0.0656 0.2445 9549  99.17
Baseline+CPFA 0.0533 0.2172 97.07 99.43
Baseline+PFAA 0.0576 0.2230 96.84  99.42
Ours (all together) 0.0526 0.2121 97.40  99.55

ing it more efficient. On the 3D60 dataset, Cross360 surpasses
the current SOTA method, PanoFormer [4], with gains of
14.75% (Abs Rel), 16.90% (Sq Rel), and 5.06% (RMSE).

Notably, depth estimation methods investigated for perspec-
tive images, such as DepthAnything [47] and ASNGeo [61],
display significantly higher error metrics when applied to
360° images. We include these baselines to illustrate the gap
between strong perspective models and methods designed for
360° inputs, following a fair setting that fine-tunes each model
on panoramic datasets using its recommended settings. Adding
spherical convolutions or spherical positional encodings would
require major architectural changes incompatible with the pre-
trained weights of DepthAnything and would remove the
benefit of its large-scale pretraining. For ASNGeo which is
a multi-task network and partially distortion-aware through
its depth-to-normal supervision, it still cannot match a model
built specifically for 360° geometry. For instance, on the
Structured3D dataset our method reduces the Sq Rel error by
66.75% relative to DepthAnything (0.0127 vs. 0.0382) and
also has the highest parameter count, while ASNGeo achieves
a lower &; accuracy of 3.41% compared to our method.
These comparisons confirm that even strong perspective-based
models remain limited on panoramic data, underscoring the
need for architectures tailored to the 360° domain.

Fig. 7 presents various qualitative comparison results. Bene-
fiting from aggregated globally coherent features and sufficient
local appearance details, without distortion issues, our method
demonstrates more accurate geometric details and better adap-
tation to varying depth ranges. In (a), our method more
accurately captures the global structure, as highlighted by the
rectangles, including precise estimations of the furthest points
and the depth range of the scene. In (b), our model avoids
misinterpreting ceiling lights as part of the room structure,
demonstrating better semantic understanding. In (c), Cross360
more accurately highlights specific regional structural details,
such as star lights, bookcases, and ladders. Additional quali-
tative results are provided in the supplementary material.

The results highlight Cross360’s adaptability and effective-
ness, particularly on large-scale datasets like Matterport3D
and Structured3D, even with incomplete ERP inputs. The
model effectively leverages available information to maximize
performance in challenging real-world scenarios, accurately
capturing the global structure of scenes.

D. Ablation Study

1) The effectiveness of modules: We conduct an ablation
study to evaluate the effectiveness of the proposed modules in
our Cross360. In our experiments, we incrementally add one

TABLE IV
ABLATION STUDY ON THE NUMBER OF TP PATCHES (3D60 TEST SET).

Num | FoV | FPS 1 | GFLOPs | AbsRel | RMSE | | 61 1

10 120 15.42 172.12 0.0599 0.2226 96.86
18 90 11.64 172.74 0.0522 0.2148 97.21
26 72 9.16 173.36 0.0526 0.2121 97.40
46 60 5.78 174.90 0.0505 0.2115 97.29

module at a time to the baseline and use a fixed pre-trained
ResNet34 [56] model as our ERP-based feature encoder. The
baseline consists of two branches in the hierarchical architec-
ture: an ERP branch and a TP branch. The concatenation of
these two encoded features, following the TP2ERP geometric
transformation, is passed to the corresponding level of the
decoder to generate a depth map for multi-level supervision.
First, we add the CPFA module to the baseline to obtain cross-
projection-aligned features. Next, we combine the baseline
with the PFAA module to test the effectiveness of progres-
sively aggregated features with attention to the final prediction.
Finally, we integrate both the CPFA and PFAA modules to
form the complete architecture.

In Table III, the baseline demonstrates the poorest per-
formance due to its inability to effectively align the ERP
and TP representations. Adding either the CPFA or PFAA
module to the baseline improves performance, with CPFA
showing a more significant enhancement. This indicates that
both modules are effective: CPFA uses cross-attention to
align features from different domains effectively, while PFAA
significantly reduces errors by integrating the most relevant
information across scales. When all modules are integrated,
performance ultimately improves by 19.82% in Abs Rel and
13.25% in RMSE compared to the baseline.

2) Non-uniform TP Sampling: The number of non-
uniformly sampled TP patches directly influences the accuracy
and efficiency of our method. We follow OmniFusion [2]
to determine the number of samples and their corresponding
FoVs. This sampling strategy places fewer patches near the
poles and more near the equator, compensating for ERP’s
1/ cos(latitude) pixel density. Unlike a strict six-face cubemap,
our design uses intentionally denser, partially overlapping
patches to reduce border discontinuities and match equatorial
pixel density. This controlled overlap enhances depth estima-
tion by providing smoother feature alignment for the CPFA
module’s cross-attention mechanism. As shown in Table IV,
our approach demonstrates significantly better performance
compared to the cubemap-based UniFuse (in Table II). For
instance, our method achieves an RMSE of 0.2226 using 10
patches, whereas UniFuse yields 0.3012 using 6 patches. This
configuration achieves an optimal balance between geometric
coverage, computational efficiency, and accuracy, where in-
creasing the number of sampled TP patches improves accuracy
at the cost of reduced prediction speed due to increased
computational demands. For any given application of our
method, there is therefore a trade-off between accuracy and
speed. Sampling the smallest number of 10 TP patches with
a 120° FoV yields the lowest accuracy but still enhances
performance by 14.75% in Abs Rel and 5.06% in RMSE
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TABLE V
DEPTH ESTIMATION ACCURACY ALONG DISTANCE

Distance Range (m) | Distribution | Abs Rel | | RMSE | | 61 1

[00-2.0) 74.3% 0.0559 0.1279 97.84
[2.0-4.0) 18.4% 0.0673 0.3760 95.30
[4.0-6.0) 5.0% 0.0788 0.5392 96.14
[6.0—-8.0) 1.4% 0.1047 1.0877 91.72
[8.0—-10.0) 0.9% 0.1410 1.7228 88.28

compared to PanoFormer (the current SOTA on 3D60 dataset)
and provides the highest FPS (15.42). Sampling 46 patches
with a 60° FoV significantly boosts performance by 15.69%
in Abs Rel and 4.99% in RMSE compared to PanoFormer
but results in the lowest FPS (5.78). Configurations with 18
and 26 patches offer a reasonable tradeoff. We chose the
26-patch configuration (highlighted in gray in the table) as
it shows only a 3.99% and 0.28% difference in Abs Rel
and RMSE, respectively, compared to the 46-patch setting
but with a significantly higher FPS (9.16 versus 5.78). To
further quantify computational complexity, we additionally
report GFLOPs in Table IV. The total cost rises only slightly
from 172.12 to 174.90 GFLOPs as the number of patches
increases from 10 to 46, representing about a 1.6% overhead.
This small increase shows that the CPFA module adds minor
computational cost when sampling more TP patches, and the
overall model remains computational complexity efficient as
the number of patch sampling grows.

3) Depth Prediction Accuracy along Distance: We quanti-
tatively evaluated the accuracy of Cross360’s depth estimation
on the 3D60 dataset across five distance intervals, with results
up to 10 meters detailed in Table V. A gradual decline in
accuracy with increasing distance is typical for monocular
depth estimation. A key factor in this trend is the severe
data imbalance, as the number of pixels at far distances is
substantially lower than at near distances, providing fewer
valid samples for the model to learn from. Cross360’s depth
estimation accuracy is strongest in the 0—2 m range (containing
743% of pixels). In the 2-6 m range, the performance
decline is moderate. Beyond 6 m, the accuracy decreases
more noticeably as valid pixels become sparse. This pattern
reflects the intrinsic difficulty of estimating depth for distant
objects, where panoramic cues weaken and each object oc-
cupies fewer pixels. Nevertheless, Cross360 maintains strong
performance across all ranges, demonstrating that its spherical-
aware feature processing provides competitive accuracy even
in challenging long-distance regions.

V. CONCLUSION

We propose a novel 360° monocular depth estimation
method. To address the distortion in ERP images, we introduce
the CPFA module that leverages complementary information
from both TP and ERP representations using a cross-attention
mechanism. CPFA lets the local, distortion-free TP features
gain global context from ERP features, ensuring the learning
of well-aligned local-with-global receptive features across both
domains. To further integrate necessary information across
scales and resolve the discontinuity issues inherent in ERP

images, we propose the PFAA module. The PFAA module
aggregates the most relevant information between scales using
the attention mechanism. Our ablation study demonstrates the
effectiveness of the proposed modules, and our experiments
against other state-of-the-art methods highlight Cross360’s
outstanding performance across most of the general public
benchmarks. Future work could explore the potential of our
architecture for other tasks, such as surface normal estimation
and room layout prediction. Additionally, collecting a com-
plete, high-quality real-world dataset would further enhance
the model’s generalizability across diverse environments, con-
tributing valuable resources to the 360° vision community.
Extending the framework to outdoor panoramic scenes by
integrating a semantic segmentation or sky masking module
to handle infinite depth regions such as sky and distant
backgrounds is another promising direction.
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