MSGS: Multispectral 3D Gaussian Splatting
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Figure 1: Real-world multispectral (MS) dataset Snake captured by our multispectral camera system. A. denotes the corresponding
wavelength. The images are shown for visualization purposes: the original reflectance values (ranging from 0 to 1) in each MS
grayscale image are mapped to RGB space for display. The final RGB image is obtained by converting multiple MS grayscale

images into RGB using Equation 2.

ABSTRACT

We present a multispectral extension to 3D Gaussian Splatting
(3DGS) for wavelength-aware view synthesis. Each Gaussian is
augmented with spectral radiance, represented via per-band spheri-
cal harmonics, and optimized under a dual-loss supervision scheme
combining RGB and multispectral signals. To improve rendering fi-
delity, we perform spectral-to-RGB conversion at the pixel level, al-
lowing richer spectral cues to be retained during optimization. Our
method is evaluated on both public and self-captured real-world
datasets, demonstrating consistent improvements over the RGB-
only 3DGS baseline in terms of image quality and spectral con-
sistency. Notably, it excels in challenging scenes involving translu-
cent materials and anisotropic reflections. The proposed approach
maintains the compactness and real-time efficiency of 3DGS while
laying the foundation for future integration with physically based
shading models.

Index Terms: Multispectral Imaging, Gaussian Splatting, Spectral
Rendering, Novel View Synthesis.

1 INTRODUCTION

Multispectral information plays a crucial role in a wide range of
real-world graphics and vision applications where material proper-
ties, lighting conditions, and appearance must be accurately cap-
tured and reproduced. Fields such as cultural heritage preservation,
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biomedical imaging, and realistic AR/VR rendering rely on spectral
fidelity beyond the visible RGB channels to perform wavelength-
aware analysis and physically plausible rendering. For example,
subtle differences in surface reflectance can reveal material compo-
sition, enable non-invasive diagnostics, or support realistic render-
ing under varied illuminants—all of which demand accurate multi-
spectral representations.

Despite recent advances in neural and point-based ren-
dering, most existing learning-based 3D reconstruction meth-
ods—including the widely adopted 3D Gaussian Splatting
(3DGS) [6]—are fundamentally limited to RGB inputs. These
models are typically optimized for photorealistic novel view syn-
thesis in the visible spectrum but are incapable of modeling
wavelength-dependent radiance variations essential for spectral
analysis and physically grounded rendering. This restricts their ap-
plicability in scenarios where color alone is insufficient to distin-
guish between visually similar but spectrally distinct materials.

In the original 3DGS pipeline, each Gaussian encodes view-
dependent color via low-order spherical harmonics (SH) coeffi-
cients across the RGB channels, with color parameters often ini-
tialized from structure-from-motion (SfM) pipelines. While this
formulation is effective for RGB reconstruction, it lacks the flex-
ibility to represent high-demensional wavelength-dependent radi-
ance distributions, which are essential for multispectral rendering.

To address this limitation, we propose a wavelength-aware ex-
tension of the 3DGS framework that enables rendering from a broad
range of spectral dimensions while preserving its compactness and
efficiency. Specifically, we introduce a spectral SH-based radiance
representation that generalizes the original RGB encoding, allow-
ing each Gaussian to store and render rich spectral information. In
addition, we propose a dual-loss supervision strategy that jointly
optimizes multispectral and RGB reconstruction, facilitating robust
training. We validate our approach on both public and self-captured
MS datasets, demonstrating significant improvements in spectral fi-
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Figure 2: Overview of the proposed Multispectral Gaussian Splatting pipeline. Dual supervision from RGB and multispectral images guides SH

parameter updates through both spectral and RGB color spaces.
delity and rendering quality over the RGB-only baselines.

2 RELATED WORK

Multispectral imaging (MSI) has been widely applied in remote
sensing, medical diagnostics, and material analysis, enabling ra-
diance capture across wavelengths beyond the visible RGB range.
Traditional MSI systems typically rely on CIE-defined spectral-
to-RGB pipelines, involving color matching functions and XYZ-
to-sRGB transformations [14]. Recent learning-based approaches
have explored data-driven solutions for multispectral reconstruction
and view synthesis [9, 7, 12, 4].

Neural Radiance Fields (NeRF) [8] have become a dominant
framework for novel view synthesis by learning continuous volu-
metric scene properties via differentiable rendering. Several NeRF
variants target the multispectral domain. X-NeRF [9] addresses
cross-spectral synthesis from heterogeneous sensors (e.g., RGB,
MS, IR) using joint optimization and a Normalized Cross-Device
Coordinate (NXDC) system , rather than improving rendering qual-
ity itself. In contrast, SpectralNeRF [7] targets physically based
spectral rendering by predicting per-wavelength radiance and em-
ploying a Spectrum Attention UNet (SAUNet) to fuse outputs into
RGB. While flexible, these methods sufter from high computational
cost and slow inference due to their reliance on implicit fields and
MLP-based rendering.

3D Gaussian Splatting (3DGS) [6] offers a compelling alterna-
tive to NeRF, replacing implicit volumetric fields with explicit 3D
Gaussians for real-time rendering and improved geometric clarity.
Recent efforts have sought to adapt 3DGS to the multispectral set-
ting. SpectralGaussians [12] enhances the original 3DGS by inte-
grating two key components: the Gaussian Shader [5], which aug-
ments each Gaussian with additional attributes such as surface nor-
mals and physically based reflectance (PBR) parameters; and Gaus-
sian Grouping [17], which clusters Gaussians based on semantic
or material similarity to promote structural coherence and reuse.
These enhancements enable more expressive and physically plausi-
ble appearance modeling. However, the method creates an indepen-
dent set of Gaussians for each spectral channel, which breaks ge-
ometric consistency across wavelengths and significantly increases
memory consumption. Meanwhile, SOC-GS [4], addresses cross-

spectral pose misalignment by enforcing spatial occupancy consis-
tency across spectra and adopting a two-stage optimization strategy
for camera poses and scene representation. Similar in motivation to
X-NeRF, SOC-GS focuses primarily on improving alignment rather
than enhancing rendering fidelity. It lacks explicit modeling of
wavelength-dependent reflectance or support for physically-based
spectral shading, limiting its effectiveness in scenes with complex
material properties.

3 METHODOLOGY

We propose a spectral 3D Gaussian Splatting representation where
each Gaussian encoded multispectral radiance. We also propose a
dual-loss supervision strategy that jointly leverages RGB and mul-
tispectral data for high-fidelity scene reconstruction. This design
preserves the efficiency and geometric compactness of 3DGS while
enabling wavelength-aware rendering. An overview of the frame-
work is shown in Figure 2.

3.1 Spectral-Aware Gaussian

We generalize the radiance representation of each Gaussian from
a 3-channel RGB spherical harmonics (SH) [10, 13] coeffi-
cients to an N-channel multispectral Spherical-Harmonics (MS-
SH) coefficients, where N denotes the number of wavelength
bands captured by the imaging system. Specifically, the zeroth-
order MS-SH coefficients are initialized from the base colors ex-
tracted via COLMAP [11], while higher-order terms are zero-
initialized and optimized during training to capture angular vari-
ations. Meanwhile, each Gaussian retains a single set of geometric
attributes—position, scale, and rotation—shared across all spectral
channels. This ensures spectral coherence while avoiding redun-
dant memory usage.

Before the forward rendering stage, we first convert the MS-SH
coefficients associated with each Gaussian into its corresponding
spectral values, following the approach used in vanilla 3DGS [6].
Based on these spectral values, we perform alpha blending along
each camera ray using the standard Gaussian Splatting compositing
model, formulated as: i1
C(p) =Y ¢i-0i(p)- [T (1 - e;(p)), ey
i=1 j

Jj=1
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Figure 3: Qualitative Comparison. Qualitative comparison. In the first row, our method better preserves high-frequency reflections compared to
3DGS. In the second row, both 3DGS and Gaussian Shader fails to reconstruct details in dark background regions, while our method maintains
structural consistency. In the third row, despite GaussianShader achieving the highest scores on the snake dataset, noticeable artifacts often

occur — for example, a long visible crack appears along the snake’s neck.

where overlapping Gaussians contribute to the final pixel value ac-
cording to their learned opacity and 2D projected footprint. This
process produces a per-pixel spectral value map, which serves as the
input for the subsequent spectral-to-RGB color conversion stage.

Following the deferred shading concept [2] and its recent ada-
pation to 3DGS [16], we convert the per-pixel multispectral color
into RGB color using CIE 1931 [14] color matching functions [3].
Specifically, the spectral radiance L(A) is converted to tristimulus
values (X,Y,Z) as:

X=YLA)xA), Y=Y LAFA), Z=YLA)ZA) 2
A A A

where X(A), 7(4), Z(A) represent the CIE 1931 standard observer
functions sampled at the input wavelengths.

To further ensure perceptual fidelity, we apply D65 white-
balance correction, aligning the rendering with daylight illumina-
tion. Gamma correction is then applied to map the linear XYZ
values to display-friendly RGB values.

3.2 Dual-loss Supervision

To effectively train the proposed multispectral 3D Gaussian Splat-
ting model, we introduce a dual-loss strategy that jointly optimizes
both multispectral accuracy and RGB rendering consistency. This
is achieved by combining two complementary loss terms: a multi-
spectral reconstruction loss -Z1s, computed directly between ren-
dered and ground-truth spectral data, and an RGB reconstruction
loss ZrgB, computed after converting the spectral outputs to RGB.

A critical design decision lies in choosing the appropriate stage
for spectral-to-RGB conversion, as it directly affects gradient prop-
agation and the fidelity of reconstruction. We explore two strate-
gies: the Gaussian-level conversion, which transforms each Gaus-
sian’s spectral radiance to RGB before rasterization, and the pixel-

level conversion, which defers this conversion until after pixel accu-
mulation. While the former simplifies RGB supervision, it discards
spectral details early in the pipeline. In contrast, the latter retains
full spectral resolution throughout rendering and supervision, lead-
ing to better reconstruction quality.

The final objective combines both loss terms using weighted co-
efficients:

Liotal = Ams-us + ARGB-LRGB 3
where Ayps and Aggp balance the relative contributions of each loss
component.

For a more detailed evaluation of the dual-loss design and con-
version strategy, please refer to subsection 4.3.

Table 1: Quantitative comparison with the original 3DGS [6] and
PBR-based Gaussian Shader [5]. All three methods are trained for
30K iterations under identical resolution and supervision settings.
Our method achieves better scores on most datasets. The best re-
sults are colored in red .

Dataset

Method Projector  Dragon Onion  Mushroom  Snake Crystal Box
PSNR T

3DGS 36.7580 38.1470 37.8868 34.5161 33.0125 37.4461 37.9612

GaussianShader 30.0921 344725 35.8232 32.8344 343955 37.6846 34.1192

Ours 36.8304  38.5589 38.3313 33.9437 33.8852  37.6949 39.9916
SSIM T

3DGS 0.9607 0.9715  0.9254 0.9139 0.9042  0.9571 0.9615

GaussianShader 0.9210 0.9550 ~ 0.9308 0.9098 0.9221 0.9576  0.9508

Ours 0.9619 09717  0.9293 0.9233 09121 0.9634  0.9686
LPIPS |

3DGS 0.0967 0.0745  0.1634 0.2214 0.3478  0.1852  0.1538

GaussianShader 0.1911 0.1149  0.1515 0.2582 0.2818  0.1642  0.1911

Ours 0.0915 0.0747  0.1491 0.2093 0.3392  0.1628  0.1302

4 RESULTS

We evaluate our method on both public and self-captured multi-
spectral data to validate its effectiveness in spectral-aware NVS and
RGB rendering quality. Results are reported using both quantitative



metrics and qualitative comparisons. Additionally, we conduct ab-
lation studies to analyze the impact of our dual-loss supervision
strategy and pixel-level spectral-to-RGB conversion design.

4.1 Datasets

Our experiments are conducted on a combination of public real-
world multispectral datasets and self-captured data.  Specifi-
cally, we use two real-world scenes from the SpectralNeRF [7]
dataset—Dragon and Project—captured with RGB cameras and ro-
tating filter wheels. Each scene contains images sequentially cap-
tured across eight narrow spectral bands spanning 400-750 nm.

To further evaluate generalizability across diverse material prop-
erties and geometries, we capture five additional scenes—Onion,
Mushroom, Snake, Crystal, and Box—using a multispectral cam-
era system (S1-EVK2b [1]) that directly acquires spectral images
across 16 bands in the 415-808,nm range, as illustrated in Figure 1.
These scenes were carefully selected to cover a wide range of ma-
terial and appearance characteristics. Onion and Mushroom rep-
resent smooth, homogeneous diffuse surfaces with low-frequency
texture, ideal for evaluating color consistency and shading. Snake
is a colorful LEGO object composed of high-frequency patterns
and synthetic materials. Crystal features strong translucency and
partial transparency, challenging both geometry and appearance re-
construction. Box is a wooden container made from abalone shell,
with complex, view-dependent reflectance due to its iridescent sur-
face. All datasets provide per-pixel spectral measurements along
with corresponding RGB images, enabling both spectral and RGB
supervision for joint evaluation.

4.2 Quantitative and Qualitative Analysis

Although recent works like X-NeRF [9], SpectralNeRF [7], Spec-
tralGaussians [12], and SOC-GS [4] have explored multispectral
view synthesis, none provide official implementations for direct
comparison. We therefore compare against the original 3DGS base-
line [6] and PBR-based Gaussian Shader [5], focusing on RGB re-
construction accuracy. Our method consistently outperforms 3DGS
in most scenes (see Table 1).

Qualitative comparisons are provided for both RGB and multi-
spectral outputs: for RGB, we visually compare our results with
those from 3DGS and Gaussian Shader, as presented in Figure 3;
for multispectral outputs, we showcase rendered spectral images
produced by our model, as 3DGS cannot represent or synthesize
spectral data. Notably, Crystal presents a challenging case due to
its translucent material and complex optical effects, while Box con-
tains an anisotropic reflective icon that highlights view-dependent
appearance variations. Our method demonstrates improved fidelity
and robustness in both cases.

Table 2: Comparison between conversion strategies at Gaussian and
Pixel Level across 7K and 30K iterations. The results are evaluated
on our self-captured crystal dataset. The best/second-best results

are colored in red / orange , respectively.

Tteration 7000 30000

Method Time ] PSNRT SSIMT LPIPS| [ Time] PSNRT SSIMT LPIPS]
Conversion RGB 04’40 34.0308  0.9505 0.2074 22°08  37.2594  0.9572 0.1866
at Gaussian MS 06’39 29.1552  0.9352 0.2295 29°04 293512 0.9387 0.2200

Level MS & RGB | 09°47  29.0900  0.9374 0.2276 5401 26.9797  0.9382 0.2315
Conversion RGB 0423 339366 0.9505  0.2072 1854 369047 09569  0.1877

at Pixel MS 07°05 340480 0.9472  0.2145 | 3040 36.6371 09528  0.1984
Level MS & RGB | 09°00 344375 09543  0.1936 | 41’56  38.6076 0.9624  0.1662

4.3 Ablation Study

We perform ablation studies on three key components: (1) the dual-
loss supervision strategy, (2) the level of spectral-to-RGB conver-
sion, and (3) the choice of spectral band range. See Table 2 and Ta-
ble 3 for detailed results.

1. Loss Supervision Strategy. We evaluate three loss set-
tings: RGB-only loss, MS-only loss, and full dual-loss. The dual-
loss strategy consistently achieves the best performance across dif-
ferent scenes and iteration checkpoints (7K and 30K), providing

a balanced trade-off between perceptual quality and spectral accu-
racy. RGB-only supervision lacks spectral fidelity, while MS-only
training, though spectrally accurate, can result in perceptual color
distortions due to the absence of visual priors.

2. Spectral-to-RGB Conversion Strategy. We further com-
pare two different strategies for spectral-to-RGB conversion: one at
the Gaussian level (before rasterization), and the other at the pixel
level (after rasterization). Results show that pixel-level conversion
consistently yields better performance. Interestingly, when apply-
ing dual-loss supervision with Gaussian-level conversion, the per-
formance at 30K iterations is even worse than at 7K, and lower
than using either loss alone. This suggests that converting spectral
data to RGB before rasterization—an inherently nonlinear projec-
tion—may introduce conflicting gradient directions during back-
propagation, especially after blending in the rasterization step.
Such conflicts could hinder optimization and reduce convergence
stability.

3. Spectral Band Selection. To investigate the difference be-
tween visible and near-infrared performance, we conduct experi-
ments on four band configurations using our self-captured crystal
dataset. The 808 nm band, which lies in the near-infrared region
beyond the visible spectrum, provides valuable structural informa-
tion and contributes positively to reconstruction quality. Interest-
ingly, however, the full spectral range from 415 to 808 nm does
not achieve the best overall performance. In fact, the 415-680 nm
configuration yields the lowest scores across all metrics, suggesting
that the 415 nm band—despite being within the visible range—may
introduce excessive noise due to sensor limitations, thus degrading
the results in both cases where it is included. Among the remaining
settings, the 431-808 nm range achieves the highest PSNR, while
the 431-680 nm range performs better in terms of SSIM and LPIPS.
This indicates a trade-off: near-infrared bands improve structural
accuracy, whereas visible-only bands offer better perceptual qual-
ity, depending on the rendering objective.

Table 3: Comparison of different spectral band selections using our
self-captured crystal dataset across 7K and 30K iterations. The

best/second-best results are colored in red / orange , respectively.

Tteration 7K Iterations 30K Iterations
Band Range Time ] PSNRT SSIMT LPIPS] | Time] PSNRT SSIMT LPIPS |
431-680 nm 1345 348798 09542  0.1949 | 1:07°07 38.1892 0.9610  0.1739
415-680 nm 14’51 34.5260 09522 0.1986 1:12°28 375136 0.9588 0.1778
431-808 nm 1458 352441 09528  0.1993 | 1:1222  38.6689 0.9598  0.1765
415-808 nm 15°01  34.8456 09507  0.2037 | 1:10'41 38.5316  0.9586  0.1797

5 CONCLUSIONS AND FUTURE WORK

We proposed a multispectral extension to 3D Gaussian Splatting
(3DGS) that enables wavelength-aware view synthesis while main-
taining the efficiency and geometric compactness of the original
framework. By augmenting the color representation with spectral
SH-based radiance and introducing a dual-loss supervision strat-
egy, our method incorporates multispectral information without du-
plicating geometry and achieves superior rendering performance
across both RGB and spectral domains. Experimental results high-
light the benefits of leveraging richer spectral data, especially in
scenes with complex materials or lighting conditions.

For future work, we aim to improve the physical accuracy of
spectral radiance representation to achieve higher visual fidelity in
NVS. While the current SH-based model [10, 13] is efficient, it re-
mains limited in capturing anisotropic reflectance and fine angular
details. To address this, future extensions may adopt more expres-
sive basis functions such as ASG [15], or incorporate physically
grounded models like BRDFs and BSSRDFs for better handling of
complex light transport. Additionally, learning adaptive weights for
multispectral channels and losses could further improve optimiza-
tion and generalization.
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