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Abstract Geometric estimation is required for scene un-
derstanding and analysis of panoramic 360° images. Current
methods usually predict a single feature, such as depth or
surface normal. These methods can lack robustness, espe-
cially when dealing with intricate textures or complex object
surfaces. We introduce a novel multi-task learning (MTL)
network that simultaneously estimates depth and surface nor-
mals from 360° images. Our first innovation is our MTL
architecture, which enhances predictions for both tasks by
integrating geometric information from depth and surface
normal estimation, enabling a deeper understanding of 3D
scene structure. Another innovation is our fusion module,
which bridges the two tasks, allowing the network to learn
shared representations that improve accuracy and robustness.
Experimental results demonstrate that our MTL architec-
ture significantly outperforms state-of-the-art methods in
both depth and surface normal estimation, showing superior
performance for complex and diverse scenes. Our model’s
effectiveness and generalizability, particularly in handling
intricate surface textures, establish it as a new benchmark for
360° image geometric estimation. The code and model are
available at https://github.com/huangkun101230/360MTLGe
ometricEstimation.

Keywords 360° images, depth estimation, surface normal
estimation, multi-task learning

1 Introduction
Multi-task learning (MTL) has emerged as a powerful ap-
proach to computer vision. By simultaneously tackling inher-
ently related tasks, MTL leverages shared representations to
enhance overall performance, robustness, and generalization
across all tasks [1, 2]. We apply MTL to monocular 360°
images, simultaneously predicting depth and surface normals.
The 360° depth estimation provides holistic scene information
that covers the 360° × 180° field of view (FoV), while 360°

surface normal estimation gives insights into the orientation
of surfaces within the scene [3]. When these tasks are learned
together, the model can develop a fuller understanding of the
scene’s 3D structure, as each task reinforces the other. For
instance, accurate depth estimation can inform surface normal
prediction by providing context about the relative positioning
of objects, while precise surface normal estimation can refine
depth predictions by offering additional geometric cues. This
synergy between tasks not only enhances the overall accuracy
of the model but also improves its ability to generalize to new
environments, making MTL for depth and surface normal
estimation an important strategy in advancing state-of-the-art
computer vision systems, such as those used in indoor navi-
gation for cleaning robots. By jointly estimating depth and
surface normals, such robots can more effectively understand
object distances and surface orientations, enabling them to
navigate complex environments efficiently and safely.

Conventional depth estimation methods that rely on per-
spective images struggle with geometric distortions intro-
duced by mapping the entire scene onto equirectangular
projection (ERP) images, which is the most commonly used
format for storing and displaying 360° imagery. These dis-
tortions, most severe along the vertical axis and intensifying
towards the poles, make it challenging for traditional perspec-
tive methods to effectively extract features directly from the
ERP domain. Previous methods [4, 5] address this problem
by extracting reliable features with distortion-aware convolu-
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Fig. 1 Our MTL model provides more accurate geometric estimates for 360° images than other methods, particularly in the regions
highlighted by red rectangles. The results are visualized as 3D point clouds, with both RGB data and color-coded surface normal maps.

tions and spherical kernels but add computational complexity
and often miss global spatial relationships due to the local
nature of convolutional kernels. Alternative approaches [6–8]
mitigate distortion through different projections, while other
models [9–11] rely on Vision Transformers (ViTs) to address
projection discrepancies and interpret scenes using patch-wise
information. However, these methods often struggle to accu-
rately discern coherent surface regions, particularly in areas
that are severely distorted by the spherical projection near
the poles of the ERP image. This difficulty is exacerbated by
subtle texture variations or repeated patterns, which existing
depth estimation techniques struggle to capture accurately.
Consequently, depth maps often smooth over these variations,
leading to a loss of critical geometric details. While surface
normal maps can offer supplementary information to help
with these challenges, the integration of depth and surface
normal estimation tasks has been under-explored in the 360°
domain. A multi-task learning approach, in which depth and
surface normal predictions support and refine each other, can
improve results for both tasks. This approach allows for more
accurate depth maps that retain essential geometric details
and surface normal maps that are more precise, ultimately
enhancing the model’s overall geometric understanding of
the 3D scene.

This paper introduces a novel end-to-end deep architecture
that uses a multi-task learning strategy for monocular 360°
depth estimation by simultaneously learning surface normals.
Inspired by the findings of Standley et al. [2], which demon-
strate that surface normal estimation enhances other tasks in
multi-task learning, our approach integrates depth and surface
normal predictions to improve overall accuracy.

The proposed network comprises three key components
to address distortion issues and enhance depth and surface
normal predictions through task knowledge transfer. First,

a shared feature extractor generates features for both depth
and surface normal branches, which are processed by two
separate spherical distortion-aware ViT networks to address
the spherical distortion challenges inherent in 360° imagery.
Second, we introduce a novel fusion mechanism that enables
knowledge transfer between the spherical ViTs by integrating
feature maps from each task. This fusion enhances scene ge-
ometry comprehension and improves depth map predictions.
Third, task-specific multi-scale transformer decoders are used
to handle long-range dependencies, significantly boosting
prediction accuracy across various scales.

By simultaneously learning depth and surface normals, our
model achieves a more comprehensive understanding of scene
structure and geometry, resulting in improved recognition
and interpretation of object shapes and spatial relationships,
as shown in Fig. 1. For instance, our model consistently
provides clearer segmentation and more accurate geomet-
ric details, even in complex regions. The model excels at
capturing fine-grained scene structures, which are essen-
tial for accurately interpreting depth and surface normals in
challenging environments. The insights provided by surface
normals enhance the spatial continuity and geometric details
of depth estimation, particularly in the areas highlighted by
the red rectangles. Additionally, our spherical ViT networks
enrich scene comprehension by offering a detailed view of
the 3D structure and object layout in panoramic scenes. Ex-
tensive experiments demonstrate that our model significantly
outperforms state-of-the-art algorithms in both 360° depth
and surface normal estimation, with strong generalization in
real-world test cases. The contributions of this paper are as
follows:

• a novel monocular 360° MTL architecture for estimating
both depth and surface normals which outperforms state-
of-the-art algorithms for both tasks,
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• a fusion module designed to efficiently merge 360° fea-
tures in the context of depth and surface normal learning,
with sharing between tasks, leading to enhanced scene
structure understanding and improved model generaliz-
ability, and

• comprehensive experimental evaluation of the gener-
alization capability and robustness of our method in
depth and surface normal estimation, with comparisons
to state-of-the-art approaches across diverse scenes and
datasets. The results reveal that our method consistently
outperforms existing approaches on widely recognized
benchmarks while maintaining a similar computation
time to single-task methods.

2 Related Work
2.1 Monocular 360° Depth Estimation

Various approaches have been taken to tackle the spherical
distortion present in ERP imagery for 360° depth estimation.
Some methods [12–14] directly take the ERP image as in-
put, employing conventional convolutional filters to perceive
the spherical distortion field and use other intrinsic infor-
mation of the scene, such as the indoor layout structure, to
model the final depth map. In contrast, Liao et al. [4] and
Coors et al. [5] used distortion-adapted kernels to enable
formal convolution operations on ERP images. However, such
methods often demand significant computational effort, and
their effectiveness remains less explored. More recently, bi-
projection has emerged as an increasingly popular approach
to addressing distortion challenges. This technique involves
projecting the distorted image onto a suitable intermediate
representation and then reprojecting it back to the original
domain. Approaches such as GLPanoDepth [15], BiFuse [6],
BiFuse++ [7], and UniFuse [8] incorporate both ERP and
CP during neural network training. Specifically, BiFuse uses
fusion in both the encoder and decoder stages, while others
share the fused features only at the encoder stage. Recently,
tangent projection (TP) has shown potential to address dis-
tortion challenges. This is because the transformed patches
under TP have smaller FoVs and less distortion compared to
the cube faces. For example, 360MonoDepth [16] directly
applies a pre-trained perspective depth estimator to project
tangent patches and fuses them back into the ERP image to
obtain the final depth map. OmniFusion [9], PanoFormer [10]
and HRDFuse [11] apply transformer-based architectures to
embed geometric information from tangent patches for depth
estimation. Recently, Elite360D [17] introduced the use of
icosahedron projection to enhance geometric information,
while Liu et al. [18] employed a teacher-student architec-

ture to generate comprehensive features for depth estimation.
However, approaches that focus solely on depth estimation
can result in models that are less robust and have a limited
understanding of scene structure. Single-task learning risks
overfitting to specific details and missing crucial information
about surface orientation and spatial relationships.

2.2 Monocular 360° Surface Normal Estimation

While surface normal estimation has been extensively stud-
ied for perspective images, directly applying these meth-
ods [3, 19–22] to the 360° domain often yields unsatisfactory
results due to spherical distortion. Although 360° surface
normal estimation can provide comprehensive information
to enhance geometric awareness, it has been less explored
than 360° depth estimation. Karakottas et al. [23] introduced
HyperSphere, a state-of-the-art method for estimating surface
normals in the 360° domain. This approach uses a quaternion
loss for supervising surface normal predictions within a CNN
architecture. However, their experiments did not cover widely
used datasets in the 360° domain, limiting applicability and
preventing it from establishing a standard similar to that for
360° depth estimation. Additionally, the CNN model strug-
gles to efficiently extract features from ERP imagery; relying
solely on surface normal supervision can make predictions
sensitive to subtle texture or color changes, obstacles that can
be mitigated by incorporating depth information.

2.3 Multi-task Learning for Image Regression

Multi-task learning is a form of transfer learning, that ad-
dresses multiple tasks simultaneously by leveraging shared
domain knowledge across complementary tasks [2, 24]. For
image regression tasks in computer vision, numerous meth-
ods [25–28] adopt a multi-task strategy to concurrently pre-
dict various related outputs, including depth [29], optical
flow [30], scene flow [31], semantic segmentation [32],
and other data [33, 34], yielding promising results. Re-
cent works have explored different sharing methods for ef-
fective knowledge transfer within neural networks, either
by manipulating hidden layers or dynamically balancing
losses during back-propagation. Approaches such as hard
parameter-sharing [28, 32, 35] involve a pipeline with a single
encoder and multiple decoders for each task. In contrast, soft
parameter-sharing [26, 36] uses multiple network columns
for each task, defining a strategy to share features between
columns. Sun et al. [37] introduce an adaptive method for
learning the sharing pattern in multi-task networks, em-
ploying a task-specific policy for separate execution paths
within a single neural network while still using standard
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Fig. 2 Our network architecture has two branches: Bdepth (blue) and Bnormal (red), dedicated to depth and surface normal estimation,
respectively. A fusion module (green) is employed to fuse the feature maps between each encoder level of Bdepth and Bnormal and feed the
fused features into the next encoder level. The fused features are also concatenated with the original depth or normal features and fed to the
corresponding decoder blocks. The final depth and normal maps are predicted in a multi-scale manner.

back-propagation. Conversely, others [28, 38] have explored
an adaptive approach to guide the weights of the losses dur-
ing back-propagation in MTL. The established potential and
effectiveness of ViT for 360° vision tasks, and the promise
of MTL to improve performance through shared representa-
tions, motivated us to explore a multi-task ViT architecture
specifically for ERP imagery. By concurrently estimating
depth and surface normals, this architecture employs a soft
parameter-sharing strategy, which improves robustness and
adaptability in diverse scenarios, leading to more accurate
360° depth and surface normal estimation.

3 Methodology
3.1 Architecture

Our MTL architecture leverages the learned representations
from both depth and surface normal estimation; this enhances
overall scene understanding and improves the accuracy of
both tasks. Depth estimates provide crucial spatial informa-
tion, while surface normals contribute detailed insights into
object perception and surface orientations within a scene.
The interaction between these complementary tasks is facili-
tated by a specially designed fusion block, which promotes
seamless integration of information from both tasks. This
bidirectional enhancement allows the model to achieve supe-
rior performance in both depth and surface normal estimation,

leading to a more comprehensive and accurate understanding
of the scene. To address the challenges posed by spherical
distortion in 360° images, we developed a U-shaped MTL
architecture that incorporates distortion-aware ViT blocks,
built on the foundation of PanoFormer [10]: the panoramic
transformer encoder and decoder blocks (PE and PD) in Fig. 2.
Our transformer decoder incorporates a multi-level structure,
focusing on spatial interconnections, handling intricate re-
gional details, and fusing contextual information at varying
scales. This hierarchical transformer architecture is applied
to both depth and surface normal tasks, resulting in two dis-
tinct ViT networks. These networks exchange knowledge by
soft-parameter sharing [39] between their encoders through
the fusion block at corresponding scales at each level.

An overview of our proposed network is shown in Fig. 2. It
simultaneously learns to predict depths and surface normals
using a hierarchical structure, comprising a shared convolu-
tional feature embedding block, fusion blocks, bottleneck,
and multi-scale spherical encoders and decoders with spher-
ical distortion awareness. The shared convolutional feature
embedding block includes 3× 3 convolutional layers and a
2 × 2 max pooling layer. It aims to extract contextual and
salient features from input images for both tasks. Further-
more, employing such a down-sampling layer is crucial to
improving computational efficiency and reducing the number
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of parameters in our multi-task model. The down-sampled
features are directed into two branches (Bdepth and Bnormal)
concurrently. Each branch comprises encoders and decoders
and is organized into four hierarchical stages that either halve
or double the dimensions and resolution of features. The
feature maps of Bdepth and Bnormal are fused through our
proposed fusion module at each encoding stage. Finally, the
decoder leverages concatenated features from corresponding
encoders, fusion modules and decoded feature maps to extract
multi-scale depth or surface normal features, followed by an
up-sampling step to reconstruct the depth and normal maps
at full resolution.

3.2 Panoramic Transformer Block

The primary issue in processing panoramic images is the
distortion introduced by ERP projection, which differs sig-
nificantly from the distortion found in perspective images
due to the non-uniform spatial warping of features. While
our focus is on developing an effective MTL architecture, we
adopt the PanoFormer block proposed by Shen et al. [10] to
specifically address this distortion issue. Unlike conventional
transformer-based methods that sample features linearly from
the input, PanoFormer leverages tangent projection to con-
vert ERP images into a set of tangent patches, each centered
on a specific point in the image. By focusing on the pixels
surrounding each tangent plane’s center, this method cap-
tures spherical geometric information more effectively, as
the tangent patches avoid the distortions typically present in
ERP images, allowing for more accurate feature extraction
from 360° imagery. Additionally, this encoder block is en-
hanced by a locally-optimized feed-forward network [40],
which strengthens local feature interactions within each patch,
ensuring that fine-grained details are preserved. The encoder
also models token flow relationships between the centers of
the tangent patches, enabling the network to understand and
capture global dependencies across the entire image. This
combination of local refinement and global awareness allows
the spherical encoder to better handle the complexities of
spherical geometry in 360° images. The representation of the
self-attention mechanism is:

P (f, ŝ) =
∑
m

Wm

∑
(q,k)

AmqkW
′
mf(ŝmqk +∆smqk)


(1)

where the feature representations f undergo spherical sam-
pling (denoted ŝ), involving self-attention heads (m), individ-
ual tokens (q), and their neighboring tokens within a tangent
patch (k). Learnable weights for each head are denoted by

fnormal

fdepth
f’depth

f’normal

ffuse

1x1 Conv Add ConcatenateSwitchable Norm2D Relu

Fig. 3 Our proposed fusion module for fusing 360° depth and
surface normal features.

Wm and W ′
m, while Amqk indicates the attention weights

assigned to each token, and ∆smqk represents the learned
flow for individual tokens.

3.3 Fusing Depth and Surface Normal Features

Our fusion module is designed to efficiently extract rep-
resentations for the two complementary tasks, seamlessly
integrated with ViT networks, as depicted in Fig. 3. Our
fusion module draws inspiration from BiFuse++ [7]. It com-
prises three blocks, each with an identical structure. Within
each block, we employ three convolutional layers: a 1 × 1

convolutional layer, a switchable normalization layer (Switch-
ableNorm), and a ReLU activation function. Conventional
convolutional blocks typically use batch normalization [41] to
mitigate internal covariate shifts. However, since our network
contains both convolutional layers (in fusion blocks) and
panoramic ViTs (in main branches), uniformly applying batch
normalization and layer normalization is sub-optimal for our
learning task. Therefore, we adopt switchable normaliza-
tion [42] that learns weights for channel-wise, layer-wise, and
batch-wise normalization to adaptively control the behaviour
of the normalization layer. By flexible selection of the most
effective normalization strategy for different components
and the information learned from different tasks, employing
switchable normalization improves the generalization capa-
bility and performance of our deep model relative to using a
fixed normalization method.

Our fusion module takes the concatenation of depth features
(fdepth) and surface normal features (fnormal) as input from
their respective task branches. This concatenated feature is
processed through three individual blocks, each dedicated to
learning distinct representations. For the depth block (blue
in Fig. 3) and the surface normal block (red in Fig. 3) , each
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of the two branches predicts a residual map that incorporates
additional information from the other task to refine its feature
maps. The resulting feature maps (f ′

depth and f ′
normal) are

then propagated to the next encoder level and simultaneously
linked to the corresponding decoder block, where they are
concatenated with the fused feature map (ffuse) from the
fusion block. Our fusion module offers several advantages: it
facilitates mutual information sharing, allowing each task to
benefit from insights gained by the other; it enables the model
to adapt to task-specific challenges, focusing on regions where
one task provides more reliable information; and it enhances
robustness and generalization ability by reducing sensitivity
to noise or inaccuracies in a single task, leading to improved
performance across diverse scenes.

3.4 Multi-scale Spherical Encoding and Decoding

The proposed ViT decoder (P̂ ) addresses spherical distortion,
comprising the same number of blocks as the encoder for
each task. It predicts the depth (D̂i) or surface normal map
(N̂i) at various scales (denoted i). Each block takes as input
the concatenation of the upsampled encoded representations,
f̂i, which has half the number of channels and double the
spatial resolution of the previous block. This input is further
combined with the task-specific feature and the fused fea-
ture through skip-links. After each block, the predictions are
produced at various scales using a 3× 3 convolution opera-
tion followed by bilinear interpolation to double the output
size. Each task-specific prediction is then passed through a
corresponding activation function to constrain the output to
lie within its valid range. For instance, sigmoid activation
(σ) is applied to the depth map to limit values between 0
and 1, while tanh activation (tanh) is used for the surface
normal map to constrain values within the range [−1, 1]. In
our experiments, the model failed to converge during training
without use of these two activation functions. The process is:

D̂i = σ
(
P̂depth(f̂depth,i ⊕ f ′

depth,i ⊕ ffuse,i)
)

(2)

N̂i = tanh
(
P̂normal(f̂normal,i ⊕ f ′

normal,i ⊕ ffuse,i)
)
(3)

Our multi-scale decoder offers a range of advantages. Pro-
cessing information at various spatial levels of the panoramic
scene enables the network to capture both fine details and
global context for depth estimation. This adaptability to dif-
ferent object sizes ensures that the network can effectively
represent structures at varying scales, promoting robustness
to diverse objects. By interpreting the fused feature in a multi-
scale manner, a richer representation of the inherent geometric
information can be learned, which is valuable for the task of

depth estimation. Moreover, the model’s generalizability to
different panoramic scene layouts is enhanced, reducing the
risk of over-fitting common scene structures present in the
training data.

The effectiveness of these introduced components is con-
firmed through our ablation study (see Sec. 4.7).

3.5 Loss Function

Our proposed MTL network simultaneously predicts depth
and surface normal maps across S scales (S is set to 4 in our
experiments), aiming to capture a comprehensive and holistic
representation of the scene geometry. During training, we
focus on measuring the loss only for valid pixels; the number
of such pixels is denoted M . The formulated loss functions
are as follows.

3.5.1 MSE Loss

LDmse and LNmse represent the mean squared error of the
estimated map for the two tasks, and are defined as:

LDmse =
∑M

j=1 ∥∆D∥2

LNmse =
∑S

i=1

∑M
j=1 ∥∆∠∥2

(4)

where ∆D = D̂j −Dj , D̂j represents the predicted depth,
and Dj is the ground truth map at the finest scale for the
current valid pixel j.∆∠ = arccos(N̂ij ·Nij) denotes angular
difference.

3.5.2 Quaternion Loss

Lquat [23] measures the angular difference between predicted
and ground truth normal maps on per-pixel basis:

Lquat =

S∑
i=1

M∑
j=1

arctan

(
∥N̂ij ×Nij∥
N̂ij ·Nij

)
(5)

3.5.3 Perceptual Loss

LDperc and LNperc are applied at the finest scale to improve
the generation of intricate details in both depth and surface
normal predictions:

LDperc =
M∑
j=1

lϕ,kfeat(D̂j , Dj)

LNperc =
M∑
j=1

lϕ,kfeat(N̂j , Nj)

(6)

lϕ,kfeat(pred, gt) =
1

CkM
∥ϕk(predj)− ϕk(gtj)∥22 (7)

where C denotes the feature’s dimensionality, ϕ represents
the pre-trained VGG16 network [43], and k is the k-th layer
within the network ϕ.



Multi-task Geometric Estimation of Depth and Surface Normal from Monocular 360° Images 7

3.5.4 Gradient Loss

Gradient loss is formulated as:

Lgrad =

S∑
s=1

1

M

M∑
i=1

(∣∣∣|∇Di
s | − |∇D̂i

s |
∣∣∣) (8)

where ∇ represents the sum of the mean absolute differences
between the gradients of the predicted depth map and the
ground truth maps, computed using Sobel kernel convolutions.

3.5.5 Overall Loss

The overall loss Ltotal function of our network is defined as:
Ltotal = λDmseLDmse + λgradLgrad+

λDpercLDperc + λNmseLNmse+

λquatLquat + λNpercLNperc

(9)

We assign weights to the depth terms as follows: λDmse =

2.0, λgrad = 1.0, and λDperc = 0.05. For surface normal
terms, we set λNmse = 1.0, λquat = 10.0, and λNperc =

0.05. Through our experiments, we noted that employing
this specific combination of investigated loss functions and
corresponding weights consistently led to superior outcomes
when compared to alternative combinations. This observation
carries significant importance in the context of MTL, as
an imbalanced adjustment of loss weights or the use of
inappropriate loss functions may result in one task dominating
another. Moreover, such misalignments can even lead to the
failure of the model to converge, underscoring the critical
role of carefully selecting and weighting loss functions for
successful multi-task training.

4 Experiments and Results
4.1 Methodology

We have validated our method on five widely recog-
nized panoramic benchmark datasets: 3D60 [14], Struc-
tured3D [44], Stanford2D3D [45], Matterport3D [46], and
SunCG [47]. Both quantitative and qualitative evaluations
were conducted for depth and surface normal estimation
tasks, comparing our approach to state-of-the-art methods
in both the 360° and perspective domains. Given the lim-
ited previous work on MTL models in the 360° domain, our
comparisons primarily consider existing single-task learning
methods. For 360° depth estimation, we compare our model
to GLPanoDepth [15], PanoFormer [10], HRDFuse [11], and
UniFuse [8]. For 360° surface normal estimation, we compare
to the current state-of-the-art, HyperSphere [23], and adapt
the prediction layers of UniFuse, PanoFormer, and OmniFu-
sion [9] to enable surface normal estimation, allowing for
a direct comparison of network architectures. There are no
prior MTL models designed for 360° imagery; therefore,

to provide a comparison against an existing MTL model,
we retrained the recently-published perspective-based MTL
method ASNGeo [3] using 360° data for both tasks. We have
also conducted an ablation study to assess the key components
of our approach, focusing on the depth estimation task, and
we have further evaluated the speed of our method.

4.2 Evaluation Metrics

We assessed the performance of depth estimation using four
standard error metrics: mean absolute error (MAE), absolute
relative error (ARE), root mean square error (RMSE), and
logarithmic root mean square error (RMSElog). Additionally,
we used three accuracy metrics to evaluate the percentage
of pixels where the ratio (δD) of the difference between the
predicted depth map and the ground truth is less than 1.251,
1.252, and 1.253. For surface normal estimation, we used three
standard error metrics: mean error, median error, and mean
square error (MSE), along with five accuracy metrics that
measure the percentage of pixels where the angular difference
(δN ) between the predicted normals and the ground truth
is less than 5°, 7.5°, 11.25°, 22.5°, and 30°. To ensure fair
comparisons, we applied consistent experimental settings to
all methods.

4.3 Datasets

—The following datasets were used for evaluation.

4.3.1 3D60 Dataset
3D60 is a panoramic dataset encompassing RGB, depth, and
surface normal data at resolutions of 256× 512, captured for
diverse scenes. It is based on two real-world indoor scanning
setups, Stanford2D3D and Matterport3D, and a synthetic
dataset from SunCG, introducing an inherent distribution
gap for improved model generalizability. We followed the
data split in HyperSphere, as recommended in the authors’
introduction. It is important to note that Matterport3D lacks
ground truth for surface normals, and Stanford2D3D’s surface
normal maps lack consistently aligned vector directions across
their data. Additionally, 3D60 faces limitations in rendering
imagery that could impact the depth estimation task. As a
result, our evaluations focused on specific subsets within the
3D60 dataset.

4.3.2 Structured3D Dataset
Structured3D constitutes an extensive synthetic dataset, com-
prising 21,835 panoramic data instances at a resolution of
512× 1024 for 3500 scenes. The dataset includes RGB im-
ages illuminated with cold, normal, and warm lighting, along
with various annotations, such as depth, surface normal, and
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Table 1 360° depth estimate results on five benchmarks. We compare our method to state-of-the-art approaches, highlighting
improvements over existing best results for each error and accuracy metric as ’Ours-Improved by’.
* Indicates evaluation performed using the corresponding partitions of the 3D60 dataset.

Dataset Method Error metric ↓ Accuracy metric ↑
MAE ARE RMSE RMSElog δD1 δD2 δD3

3D60

UniFuse 0.1611 0.0720 0.3012 0.0464 94.51 98.87 99.64
PanoFormer 0.1244 0.0617 0.2234 0.0386 96.65 99.41 99.80
HRDFuse 0.1611 0.0729 0.2911 0.0460 94.72 98.92 99.62
GLPanoDepth 0.1426 0.0673 0.2535 0.0420 96.00 99.30 99.79
ASNGeo 0.1782 0.0837 0.3305 0.0525 93.24 98.68 99.59
Ours 0.0962 0.0465 0.2050 0.0325 97.66 99.50 99.83
Ours-Improved by 22.67% 24.64% 8.24% 15.80% 1.01 0.09 0.03

Stanford2D3D*

UniFuse 0.1539 0.0683 0.2884 0.0462 95.08 99.07 99.72
PanoFormer 0.1099 0.0537 0.2043 0.0363 97.29 99.61 99.89
HRDFuse 0.1396 0.0614 0.2606 0.0412 96.39 99.41 99.81
GLPanoDepth 0.1530 0.0716 0.2599 0.0442 95.89 99.45 99.85
ASNGeo 0.1627 0.0790 0.3051 0.0515 93.51 99.01 99.71
Ours 0.0873 0.0418 0.1928 0.0315 98.02 99.67 99.88
Ours-Improved by 20.56% 22.16% 5.63% 13.22% 0.73 0.06 –0.01

Matterport3D*

UniFuse 0.1759 0.0772 0.3190 0.0483 94.22 98.96 99.70
PanoFormer 0.1348 0.0657 0.2360 0.0399 96.78 99.50 99.88
HRDFuse 0.1719 0.0764 0.3022 0.0469 94.93 99.16 99.75
GLPanoDepth 0.1515 0.0709 0.2627 0.0430 96.12 99.38 99.83
ASNGeo 0.1866 0.0869 0.3406 0.0536 93.32 98.71 99.63
Ours 0.1035 0.0486 0.2141 0.0331 97.74 99.59 99.87
Ours-Improved by 23.22% 26.03% 9.28% 17.04% 0.96 0.09 –0.01

SunCG*

UniFuse 0.1071 0.0540 0.2401 0.0392 95.19 98.32 99.30
PanoFormer 0.0969 0.0534 0.1890 0.0354 94.87 98.83 99.51
HRDFuse 0.1366 0.0690 0.2744 0.0465 92.15 97.42 98.89
GLPanoDepth 0.0957 0.0486 0.2094 0.0361 95.60 98.82 99.54
ASNGeo 0.1588 0.0752 0.3132 0.0489 92.63 98.22 99.31
Ours 0.0718 0.0405 0.1756 0.0303 97.14 99.04 99.60
Ours-Improved by 24.97% 16.67% 7.09% 14.41% 1.54 0.21 0.06

Structured3D

UniFuse 0.2581 0.2149 0.4133 0.1142 75.25 91.09 95.61
PanoFormer 0.3097 0.2697 0.4804 0.1283 71.84 88.28 94.06
HRDFuse 0.3141 0.3090 0.4867 0.1331 70.72 87.94 93.89
GLPanoDepth 0.5028 0.4539 0.6992 0.1800 52.66 76.25 87.68
ASNGeo 0.2954 0.2469 0.4595 0.1224 73.75 89.87 94.92
Ours 0.2053 0.1684 0.3428 0.0940 82.79 93.63 96.74
Ours-Improved by 20.46% 21.64% 17.06% 17.69% 7.54 2.54 1.13

Ours Average Improvement 21.57% 23.14% 12.65% 16.75% 4.28 1.32 0.58

semantic segmentation. We preprocessed the dataset, form-
ing examples in an 8:1:1 ratio, resulting in 2,181 test data
instances with randomly selected lighting conditions.

4.4 Implementation Details

Our experiments were conducted using a single CPU core of
an Intel Xeon W-2133 along with an RTX 3090 GPU. The
batch size was 2, and the input resolution was 256 × 512.
We employed the Adam optimizer with default settings,
initialising the learning rate to 10−4 and decreasing it by
half every 12 epochs. The training process extended to 120

epochs, with early stopping implemented at the 12th epoch if
no further improvements were achieved.

4.5 Experimental Results

For both tasks, we conducted a quantitative comparison be-
tween our proposed model and state-of-the-art methods across
the five datasets, as detailed in Tables 1 and 2. To ensure a fair
evaluation, we retrained all models using their own authors’
hyper-parameter settings and identical data splits. Our method
consistently outperformed existing approaches for both tasks,
setting a new state-of-the-art across all five benchmarks.
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Table 2 360° surface normal comparisons on five benchmarks. We compare our method to state-of-the-art approaches, highlighting
improvements over existing best results for each error and accuracy metric as ’Ours-improved by’.
* Indicates evaluation performed using the corresponding partitions of the 3D60 dataset.

Dataset Method Error metric ↓ Accuracy metric ↑
Mean Median MSE δN1 δN2 δN3 δN4 δN5

3D60

UniFuse 6.5829 0.5169 268.6102 76.09 78.82 82.46 89.59 92.28
PanoFormer 17.2109 6.4281 906.0848 50.72 55.15 60.70 72.83 78.10
OmniFusion 7.7549 1.3175 301.8934 72.35 76.01 80.2 88.22 91.26
HyperSphere 5.6176 0.2421 215.0301 77.34 79.99 83.84 91.11 93.71
ASNGeo 32.8173 28.0937 1214.0923 0.03 0.04 0.06 0.46 64.11
Ours 5.2394 0.3025 187.1651 78.19 81.25 85.12 91.85 94.35
Ours-improved by 6.73% –24.94% 12.96% 0.85 1.27 1.28 0.73 0.64

Stanford2D3D*

UniFuse 6.9502 0.4675 297.777 76.34 78.77 82.21 88.57 91.29
PanoFormer 17.2017 7.2088 849.7950 48.21 52.98 59.04 72.13 78.08
OmniFusion 8.0590 1.2903 322.0786 72.42 76.14 80.31 87.46 90.47
HyperSphere 6.0463 0.2242 244.3175 77.48 79.76 83.26 89.73 92.49
ASNGeo 33.3921 28.4364 1263.7831 0.04 0.06 0.09 0.39 60.84
Ours 5.7956 0.3222 219.0471 77.74 80.27 83.77 90.29 93.02
Ours-Improved by 4.15% –43.7% 10.31% 0.26 0.51 0.51 0.56 0.53

Matterport3D*

UniFuse 7.2675 0.6434 289.4016 72.91 76.04 80.22 88.59 91.62
PanoFormer 18.1228 7.3137 944.5936 47.56 52.20 58.10 71.21 76.84
OmniFusion 8.500 1.5493 327.3145 69.16 73.08 77.75 87.06 90.49
HyperSphere 6.2324 0.3041 231.6290 74.13 77.23 81.70 90.29 93.23
ASNGeo 33.3434 28.3574 1254.0368 0.03 0.04 0.06 0.45 61.06
Ours 5.7579 0.3677 199.5677 75.29 78.92 83.42 91.20 93.99
Ours-Improved by 7.61% –20.94% 13.84% 1.16 1.69 1.72 0.91 0.77

SunCG*

UniFuse 3.3994 0.0416 154.5543 89.01 90.31 91.98 94.75 95.92
PanoFormer 13.6272 2.3037 805.9224 65.38 68.63 72.32 79.80 83.06
OmniFusion 4.3822 0.3854 177.3558 85.51 87.96 90.25 93.75 95.22
HyperSphere 2.6630 0.0031 118.1888 90.46 91.61 93.22 95.83 96.86
ASNGeo 30.0883 26.6731 1001.082 0 0 0 0.59 79.91
Ours 2.5345 0.0067 103.0089 90.58 91.84 93.45 96.07 97.11
Ours-Improved by 4.83% –116.08% 12.84% 0.12 0.23 0.23 0.24 0.25

Structured3D

UniFuse 10.4186 0.7087 576.2404 70.99 76.28 78.91 84.11 86.66
PanoFormer 20.2634 8.6808 1157.807 47.02 52.68 58.12 68.7 73.75
OmniFusion 12.0589 2.0627 634.7285 65.79 71.9 75.67 82.02 85.04
HyperSphere 9.4531 0.2763 517.8832 72.76 77.73 79.81 84.97 87.62
ASNGeo 36.2867 30.3338 1538.0035 0.01 0.01 0.01 0.12 53.12
Ours 8.9783 0.4831 469.0207 72.51 77.87 80.65 86.02 88.58
Ours-Improved by 5.02% –74.87% 9.44% –0.25 0.14 0.84 1.05 0.96

Ours Average Improvement 5.88% –49.91% 11.20% 0.30 0.71 1.06 0.89 0.80

Specifically, for 360° depth estimation, it demonstrated an
average improvement of 21.57% in MAE, 23.14% in ARE,
12.65% in RMSE, and 16.75% in RMSElog, surpassing pre-
vious best-performing depth estimation methods. For 360°
surface normal prediction, it achieved a 5.88% improvement
in mean error and 11.20% in MSE, although with a higher
median error of 49.91% on average (see our discussion of
limitations in Sec. 4.9).

Our model demonstrated a significant performance ad-
vantage across all benchmarks for the depth estimation task.
Specifically, it achieved substantial improvements of 22.67%,

24.64%, and 15.80% on 3D60; 20.56%, 22.16%, and 13.22%
on Stanford2D3D; 23.22%, 26.03%, and 17.04% on Mat-
terport3D; and 24.97%, 16.67%, and 14.41% on SunCG for
MAE, ARE, and RMSElog, respectively. These lower error
metrics indicate that our model produces more accurate and
reliable depth maps, reducing discrepancies between pre-
dicted and actual depths. On the surface normal prediction
task, our model also showed considerable improvement, with
gains of 6.73% and 12.96% on 3D60; 4.15% and 10.31%
on Stanford2D3D; 7.61% and 13.84% on Matterport3D; and
4.83% and 12.84% on SunCG for the mean and MSE error
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Fig. 4 Qualitative 360° depth comparisons were conducted on diverse datasets including 3D60 [14], Stanford2D3D [45], Matterport3D [46],
SunCG [47], and Structured3D [44]. Areas outlined in red are regions where our approach notably enhances object boundaries, providing a
more accurate representation of the overall scene geometry. GT denotes ground truth.

metrics, respectively. These improvements indicate that our
model delivers more precise surface orientation information,
resulting in a deeper understanding of the scene’s geome-
try. This highlights our MTL architecture’s effectiveness,
which simultaneously enhances both tasks. The lower error
metrics for depth and surface normal estimation reflect a
more accurate reconstruction of scene depth and finer surface
detail recognition. These advances demonstrate the superior
performance of our model to that of state-of-the-art methods,
establishing it as a new benchmark for 360° image geometric
estimation.

To assess the generalization ability of our MTL model, we
applied the models trained on the 3D60 dataset directly to the
Structured3D dataset, revealing a significant performance gap
between our model and others. While UniFuse demonstrated

strong generalization for the depth task, our model surpassed
it by 20.46% for MAE, and 21.64% for ARE, and achieved
a 7.54% higher accuracy score for depth predictions within
a difference of 1.25 from the ground truth. For the surface
normal task, our model outperformed HyperSphere, which
previously exhibited the best performance. Specifically, our
model showed a 5.02% lower mean error, and a 9.44% lower
MSE error, but slightly decreased accuracy (0.25) for angular
differences with ground truth under 5°. These differences can
be attributed to Structured3D’s synthetic nature, featuring a
unique depth range distribution and a mix of small objects
with subtle depth and surface changes, like cups, alongside
significant depth variations, such as hollow shelves with
books. The limitations of previous methods, which focused
exclusively on feature representations learned from the single
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Fig. 5 Qualitative 360° surface normal comparisons between HyperSphere [23], ASNGeo [3], the adapted UniFuse [8], PanoFormer [10],
OmniFusion [9] and our method.

task, became evident in their reduced generalization ability
and effectiveness across diverse datasets. Our MTL architec-
ture addresses these challenges, enhancing the adaptability
and robustness of our model to various scenarios and different
datasets.

To provide a comparison to another MTL method, we ap-
plied a recent MTL method designed for perspective images,
ASNGeo [3], to directly handle 360° data for both depth and
surface normal estimation. Quantitative results show that AS-
NGeo consistently underperforms across all five benchmarks,
delivering worse results than other methods. This outcome
underscores the limitations of directly applying perspective-
based MTL architectures to the 360° domain, where they
fail to adequately address the unique challenges posed by
spherical distortion and the non-uniform spatial relationships
inherent in panoramic imagery. These findings highlight the

effectiveness of our proposed MTL architecture specifically
designed for 360° imagery. Unlike perspective-based meth-
ods, our approach successfully adapts to the unique geometric
properties of panoramic images, resulting in significantly
better performance and demonstrating the critical need for
specialized solutions in the 360° domain.

We present qualitative comparisons for each task for various
methods in Figs. 4 and 5, showing results from a single test
instance for each of the five benchmarks. For the depth task,
we highlight critical regions in red rectangles to emphasize the
differences between our method and existing approaches. Our
model consistently captures finer details, rendering sharper
and more complete object boundaries within the scenes. No-
tably, our model exhibits a superior understanding of the
geometric structure, as demonstrated by the Stanford2D3D
example, where it accurately captures the scale and propor-
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tions of the entire scene with reduced color discrepancies
compared to other methods. In the qualitative comparison for
surface normals, we visualize the predicted normal vectors,
with invalid areas represented in gray. Our model outper-
forms state-of-the-art methods by providing more accurate
representations of geometric structures and surface orienta-
tions, further illustrating its effectiveness in enhancing scene
understanding and geometric perception.

4.6 Computational Effort

To investigate the extra computational cost of using a multi-
task approach, we compared computation times for our model
and PanoFormer [10] on an RTX3090; see Table 3, Our
multi-task model requires more computational resources
(262.38 GFLOPs, 130.32 GMACs) than PanoFormer (151.63
GFLOPs, 74.85 GMACs) due to its multi-task nature, which
simultaneously predicts both depth and surface normals. This
increase in computational demand is expected in models
that handle multiple tasks, as they inherently require more
parameters and operations to integrate and process addi-
tional information. Despite the higher complexity, our model
maintained a comparable training speed (49 min/epoch) to
PanoFormer (47.5 min/epoch) on the 3D60 dataset. The
inference time for a single frame differs by less than 10%
(0.1212 sec/instance for our model vs. 0.1109 sec/instance
for PanoFormer), indicating that the additional task does not
impose a substantial delay in real-time applications.

However, in resource-constrained environments such as
mobile devices or embedded systems, where computational
power and memory are limited, the model’s increased com-
plexity may pose challenges. To mitigate this, we could
optimize the model in terms of architecture and training
strategies. Architecturally, we could adapt PanoFormer’s
block to capture global dependencies on lower-resolution
feature maps while using convolutional neural network blocks
to extract high-resolution features. This approach reduces
computational overhead while preserving the model’s ability
to process the complex geometric information in 360° im-
agery. On the training side, we could implement PyTorch’s
mixed precision training, which significantly reduces memory
usage and training time. By selectively using full precision
where necessary, this method minimizes memory footprint
while maintaining high accuracy. It is especially effective
on modern hardware, such as NVIDIA GPUs, which have
dedicated support for mixed precision operations.

While these optimizations could improve the efficiency
of our model, additional trade-offs must be considered for

Table 3 Computational Effort.
GFLOPs GMACs Training Time Inference Time

PanoFormer 151.63 74.85 47.5 min / epoch 0.1109 s
Ours 262.38 130.32 49 min / epoch 0.1212 s

Table 4 Ablation study.
Method MAE ↓ ARE ↓ RMSE ↓
Baseline 0.1577 0.0787 0.2975
Baseline+FB 0.1295 0.0649 0.2470
Baseline+FB+Fusion 0.1458 0.0742 0.2682
Baseline+FB+Multi-scale 0.0997 0.0480 0.2110
Ours (all components) 0.0962 0.0465 0.2050

deployment in low-resource environments. For example, tech-
niques such as pruning, quantization, or distillation could
further reduce resource usage, although they often come at the
cost of accuracy. In scenarios where inference speed is critical
but high precision is not, these methods may be employed
to strike a better balance between performance and resource
constraints. Overall, our current implementation demonstrates
that, despite its higher complexity, the model remains feasible
for environments with moderate computational resources,
such as high-end consumer GPUs or cloud-based systems.

4.7 Ablation Study

We conducted an individual component study on the 3D60
dataset to validate the critical components of our multi-task
architecture under consistent training and testing conditions:
see Table 4. Our baseline model duplicated the PanoFormer
network for both depth and surface normal tasks, with the
two branches only intersecting at the bottleneck block. This
configuration has unsatisfactory performance, indicating that
a naive combination of networks does not suffice for effective
multi-task learning. To evaluate other components of our
MTL model, we introduced a shared convolutional feature
extraction block (FB) for both branches to extract low-level
features. This modification led to a notable improvement of
17.88% in terms of MAE.

Next, we investigated the effectiveness of the fusion blocks
and the multi-scale decoder within the existing structure.
While these components led to improvements of 7.55% and
36.78%, respectively, adding the fusion module alone slightly
reduced performance compared to using only the feature em-
bedding block. This is likely due to the increased complexity
of shared task information, which the network struggles to
process efficiently without the multi-scale decoder to balance
and integrate information across different levels. The fusion
module is designed to facilitate knowledge transfer between
tasks, but without the multi-scale decoder, it cannot fully
capitalize on this synergy. However, when all components
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Table 5 Quantitative comparison of different fusion strategies for depth and surface normals on the 3D60 dataset.

Method Depth Estimation Surface Normal Estimation
MAE ↓ ARE ↓ RMSE ↓ δD1 ↑ Mean ↓ Median ↓ MSE ↓ δN1 ↑

One encoder 0.0984 0.0474 0.2087 97.59 5.4010 0.3594 193.7227 77.92
Cross-attention 0.1026 0.0496 0.2141 97.32 5.3561 0.3442 192.6810 78.08
Ours 0.0962 0.0465 0.2050 97.66 5.2394 0.3025 187.1651 78.19

were integrated into our comprehensive multi-task architec-
ture, performance improved by 39.00%, demonstrating how
the fusion module and multi-scale decoder complement each
other to enhance results for both tasks. This outcome under-
scores the importance of each component of our multi-task
network and highlights how their combined effect is crucial
to achieving the reported performance.

4.8 Alternative Architectures

We further conducted experiments on two alternative fusion
module designs: (i) using a shared encoder for both depth and
surface normal estimation, and (ii) applying a cross-domain
attention mechanism in the decoder to bridge the gap between
the two tasks. Our proposed fusion module still outperforms
these alternatives in both depth and surface normal estimation,
as reported in Table 5.

4.8.1 Shared Encoder for Both Tasks
In the first experiment, we used a single shared encoder for
both tasks. This approach (One encoder) has the advantage
of reducing the overall number of parameters and simpli-
fying the model architecture. However, while this strategy
achieved acceptable results, especially for the depth estima-
tion task, it could not fully differentiate between the specific
characteristics of depth and surface normal features. Each
task requires different feature representations, particularly
in the early stages of encoding, where distinct geometric
cues are crucial for accurate predictions. The shared encoder
was unable to capture these nuances effectively, leading to
weaker surface normal estimation performance. The error
metrics show that this approach led to an imbalance between
the tasks, with the depth task dominating the other during
training, which limited the model’s ability to generalize well
across both tasks simultaneously.

4.8.2 Cross-Domain Attention in the Decoder
The second experiment involved using a cross-domain atten-
tion mechanism to bridge depth and surface normal estimation
in the decoder stage. While this design (Cross-attention) was
intended to enhance information exchange between the two
tasks during decoding, it introduced excessive complexity
to the model. The resulting architecture became too large

Table 6 Examples from (a) Stanford2D3D and (b) SunCG datasets.
Example Method Mean ↓ Median ↓ MSE ↓

(a) HyperSphere 15.1213 2.6880 715.2992
Ours 14.3891 5.0646 601.8008

(b) HyperSphere 6.4296 0.2639 146.5674
Ours 3.1416 0.4131 75.3159

to train at full scale, significantly increasing computational
demands and memory requirements. As a result, we did not
apply cross-attention at the final scale. The results in Ta-
ble 5 show that this strategy caused one task to dominate the
other during training. Surface normal estimation achieved
better quantitative results than depth estimation, indicating
an imbalance in task performance.

4.8.3 Our Fusion Module

In contrast, our proposed fusion module achieved an appro-
priate balance between the two tasks by facilitating smooth
information transfer without overwhelming the network with
excessive complexity. The separate encoders allow for task-
specific feature extraction, and the fusion module effectively
shares useful information between the two branches with-
out leading to overfitting or imbalance in the training for
each task. As a result, both tasks achieve their best results
simultaneously. This demonstrates the effectiveness of our
fusion module and the entire architecture for maintaining high
performance across both depth and surface normal estimation.

4.9 Limitations and Future Work

Our model provides new state-of-the-art performance for
360° depth estimation across all metrics, and for 360° surface
normal estimation across most metrics except median error,
as shown in Table 2. For 360° surface normal estimation,
we primarily compared our model to the current state-of-
the-art, HyperSphere, and consistently observed lower mean
and MSE metrics, although a higher median error. Individual
quantitative results from the Stanford2D3D (example (a)) and
SunCG (example (b)) datasets are detailed in Table 6. The low
mean error values reflect that, on average, our model’s pre-
dictions are more closely aligned to true surface orientations
than HyperSphere’s (3.1416 versus 6.4296 in example (b)).
The low MSE, which penalizes larger errors more heavily,
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Fig. 6 Qualitative evaluation on two specific examples from the Stanford2D3D (a) and SunCG (b) datasets. Our model demonstrates more
precise predictions, accurately capturing object boundaries and the entire ceiling.

Input GT Depth Ours Depth GT Surface Normal Ours Surface Normal

Fig. 7 Failures involving glass walls (above) and mirrors (below) from the Structured3D dataset. Red rectangles indicate relevant regions.

further suggests that our model avoids significant outliers,
ensuring stable and accurate predictions across most of the
image (601.8008 versus 715.2992 in example (a)).

However, the higher median error indicates challenges with
specific outliers or complex regions (5.0646 versus 2.6880 in
example (a), and 0.4131 versus 0.2639 in example (b)). We
visualize these examples in Fig. 6, where our method captures
more geometric details around small object boundaries in (a)
and accurately predicts the ceiling’s surface normals, whereas
HyperSphere struggles in (b). While the consistently low
mean and MSE errors highlight our model’s effectiveness
in delivering accurate surface normal predictions across a
wide range of scenarios, the higher median error points to
areas for future improvement. Specifically, addressing the
occasional difficulties our model faces with outliers and
certain challenging regions will be a key focus in our future
work.

Additionally, our model encounters issues when dealing
with scenes containing glass walls or mirrors, as illustrated
in Fig. 7. In such scenarios, the model often struggles to
accurately interpret surface orientations and depth due to
the unique visual effects introduced by these materials. For
instance, mirrors can reflect entire sections of a room, causing
the model to perceive over-extended scene depth and mis-
interpret surface normals. This occurs because the model

treats the reflection as a continuation of the physical environ-
ment, resulting in erroneous geometric predictions. Similarly,
when transparent glass is present in front of the camera, the
model may over-extrapolate depth or surface normal values
by mistakenly interpreting the space behind the glass as part
of the scene geometry, despite the distortion caused by the
transparency.

To address these limitations, future research could explore
strategies to handle reflective and transparent surfaces. One
potential solution is incorporating additional material-based
cues to allow the model to differentiate between glass, mir-
rors, and solid objects. This could involve using reflectance
maps or leveraging external sensors that detect surface prop-
erties beyond visual data. Another approach could include
semantic segmentation in the multi-task framework, enabling
the model to identify and treat reflective or transparent ob-
jects differently during depth and surface normal estimation.
These enhancements would make the model more robust in
practical applications, such as indoor navigation and scene
reconstruction, where these materials are common.

5 Conclusions
In this paper, we proposed an MTL network for monocular
indoor 360° geometric estimation, achieving state-of-the-art
performance for both depth and surface normal tasks simul-
taneously. Our architecture leverages the strengths of MTL to
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provide a comprehensive understanding of scene geometry
by effectively fusing features from both depth and surface
normal estimations. We introduced a fusion module com-
posed of specifically designed blocks to facilitate positive
knowledge transfer between the two ViT branches. Addi-
tionally, our multi-scale spherical decoder further enhances
the perception of scene structure at various levels. Experi-
mental results demonstrate that our approach establishes new
baselines for both tasks, highlighting our model’s superior
performance, robustness and generalization ability. This is
further evidenced by conducting experiments on the Struc-
tured3D dataset, underscoring its potential applicability to
real-world scenarios.
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[25] Guizilini V, Lee KH, Ambruş R, Gaidon A. Learning optical
flow, depth, and scene flow without real-world labels. IEEE
Robotics and Automation Letters, 2022, 7(2): 3491–3498.

[26] Zhao H, Zhang J, Zhang S, Tao D. JPerceiver: Joint perception
network for depth, pose and layout estimation in driving scenes.
In European Conference on Computer Vision, 2022, 708–726.

[27] Mayer N, Ilg E, Hausser P, Fischer P, Cremers D, Dosovitskiy
A, Brox T. A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, 4040–4048.

[28] Kendall A, Gal Y, Cipolla R. Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, 7482–7491.

[29] Bhanushali J, Muniyandi M, Chakravarthula P. Cross-Domain
Synthetic-to-Real In-the-Wild Depth and Normal Estimation
for 3D Scene Understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2024, 1290–1300.

[30] Saxena S, Herrmann C, Hur J, Kar A, Norouzi M, Sun D, Fleet
DJ. The surprising effectiveness of diffusion models for optical
flow and monocular depth estimation. Advances in Neural
Information Processing Systems, 2024, 36.

[31] Liu H, Lu T, Xu Y, Liu J, Wang L. Learning optical flow
and scene flow with bidirectional camera-lidar fusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2023.

[32] Liu M, Wang S, Guo Y, He Y, Xue H. Pano-SfMLearner:
Self-Supervised multi-task learning of depth and semantics in
panoramic videos. IEEE Signal Processing Letters, 2021, 28:
832–836.

[33] Dong Y, Fang C, Bo L, Dong Z, Tan P. PanoContext-Former:
Panoramic Total Scene Understanding with a Transformer. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024, 28087–28097.

[34] Xu D, Ouyang W, Wang X, Sebe N. PAD-Net: Multi-tasks
guided prediction-and-distillation network for simultaneous
depth estimation and scene parsing. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
2018, 675–684.

[35] Wang Y, Tsai YH, Hung WC, Ding W, Liu S, Yang MH.
Semi-supervised multi-task learning for semantics and depth.
In Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, 2022, 2505–2514.

[36] Kundu JN, Lakkakula N, Babu RV. UM-Adapt: Unsupervised
multi-task adaptation using adversarial cross-task distillation.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, 1436–1445.

[37] Sun X, Panda R, Feris R, Saenko K. AdaShare: Learning what
to share for efficient deep multi-task learning. Advances in
Neural Information Processing Systems, 2020, 33: 8728–8740.

[38] Chen Z, Badrinarayanan V, Lee CY, Rabinovich A. GradNorm:
Gradient normalization for adaptive loss balancing in deep
multitask networks. In International conference on machine
learning, 2018, 794–803.

[39] Ruder S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

[40] Yuan K, Guo S, Liu Z, Zhou A, Yu F, Wu W. Incorporating
convolution designs into visual transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
2021, 579–588.

[41] Ioffe S, Szegedy C. Batch Normalization: Accelerating deep



Multi-task Geometric Estimation of Depth and Surface Normal from Monocular 360° Images 17

network training by reducing internal covariate shift. In Inter-
national conference on machine learning, 2015, 448–456.

[42] Luo P, Ren J, Peng Z, Zhang R, Li J. Differentiable Learning-
to-Normalize via Switchable Normalization. International
Conference on Learning Representation (ICLR), 2019.

[43] Simonyan K, Zisserman A. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[44] Zheng J, Zhang J, Li J, Tang R, Gao S, Zhou Z. Structured3D:
A large photo-realistic dataset for structured 3d modeling. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16,
2020, 519–535.

[45] Armeni I, Sax S, Zamir AR, Savarese S. Joint 2d-3d-
semantic data for indoor scene understanding. arXiv preprint
arXiv:1702.01105, 2017.

[46] Chang A, Dai A, Funkhouser T, Halber M, Niessner M,
Savva M, Song S, Zeng A, Zhang Y. Matterport3D: Learning
from RGB-D data in indoor environments. arXiv preprint
arXiv:1709.06158, 2017.

[47] Song S, Yu F, Zeng A, Chang AX, Savva M, Funkhouser
T. Semantic scene completion from a single depth image. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, 1746–1754.

Author biographies

Kun Huang is currently a Ph.D. candidate
at Victoria University of Wellington, New
Zealand. He received bachelor’s and M.S. de-
grees from Victoria University of Wellington
in 2017 and 2021, respectively. His research
interests include 360° image and video edit-
ing, computer vision, virtual reality and mixed
reality. He is a student branch chair and pro-

fessional activity coordinator of the IEEE New Zealand Central
Section.

Fang-Lue Zhang received a Ph.D. degree
from Tsinghua University in 2015. He is cur-
rently a Senior Lecturer in Computer Graph-
ics at the Victoria University of Welling-
ton. His research interests include image and
video editing, computer vision, and computer
graphics. He received a Victoria Early-Career
Research Excellence Award in 2019, and a

Fast-Start Marsden Grant from the New Zealand Royal Society in
2020. He is on the editorial board of Computers & Graphics. He
served as program chair of Pacific Graphics 2020 & 2021, and CVM
2024. He is a committee member of IEEE Central New Zealand
Section.

Fangfang Zhang received a Ph.D. degree in
computer science from Victoria University of
Wellington in 2021. Her Ph.D. thesis received
an IEEE CIS Outstanding Ph.D. Disserta-
tion Award. She is currently a lecturer in the
Centre for Data Science and Artificial Intelli-
gence & School of Engineering and Computer
Science, Victoria University of Wellington.

Her research interests include evolutionary computation, hyper-
heuristic learning/optimisation, job shop scheduling, surrogates, and
multitask learning. She is an Associate Editor of Expert Systems
With Applications, and Swarm and Evolutionary Computation. She
is the secretary of the IEEE New Zealand Central Section, and
Vice-Chair of the IEEE Taskforce on Evolutionary Scheduling and
Combinatorial Optimisation.

Yu-Kun Lai Yu-Kun Lai is a Professor in
the School of Computer Science and Infor-
matics, Cardiff University, UK. He received
his B.S. and Ph.D. degrees in computer sci-
ence from Tsinghua University in 2003 and
2008 respectively. His research interests in-
clude computer graphics, computer vision,
geometric modeling, and image processing.

Paul L. Rosin Paul L. Rosin is a Profes-
sor in the School of Computer Science and
Informatics, Cardiff University. He received
his Ph.D. degree from City University, Lon-
don, in 1988. Previous posts were at Brunel
University, the Institute for Remote Sensing
Applications, Joint Research Centre, Italy, and
Curtin University of Technology. His research

interests include low-level image processing, performance evalu-
ation, shape analysis, facial analysis, medical image analysis, 3D
mesh processing, cellular automata, non-photorealistic rendering,
and cultural heritage.

Neil Dodgson Neil Dodgson is Professor
of Computer Graphics and Dean of Graduate
Research at Victoria University of Wellington.
His Ph.D. was in image processing, from the
University of Cambridge, where he spent 25
years, becoming full Professor in 2010. His
research is in 3D TV, subdivision surfaces,
imaging, and aesthetics. He is a Fellow of

Engineering New Zealand, of the Institution of Engineering and
Technology and of the Institute for Mathematics and its Applications.


	1 Introduction
	2 Related Work
	2.1 Monocular 360° Depth Estimation
	2.2 Monocular 360° Surface Normal Estimation
	2.3 Multi-task Learning for Image Regression

	3 Methodology
	3.1 Architecture
	3.2 Panoramic Transformer Block
	3.3 Fusing Depth and Surface Normal Features
	3.4 Multi-scale Spherical Encoding and Decoding
	3.5 Loss Function
	3.5.1 MSE Loss
	3.5.2 Quaternion Loss
	3.5.3 Perceptual Loss
	3.5.4 Gradient Loss
	3.5.5 Overall Loss


	4 Experiments and Results
	4.1 Methodology
	4.2 Evaluation Metrics
	4.3 Datasets
	4.3.1 3D60 Dataset
	4.3.2 Structured3D Dataset

	4.4 Implementation Details
	4.5 Experimental Results
	4.6 Computational Effort
	4.7 Ablation Study
	4.8 Alternative Architectures
	4.8.1 Shared Encoder for Both Tasks
	4.8.2 Cross-Domain Attention in the Decoder
	4.8.3 Our Fusion Module

	4.9 Limitations and Future Work

	5 Conclusions

