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Figure 1: The framework of our proposed Neural Panoramic Representation (NPR). Our model represents 360° videos using
MLPs, allowing for easy video editing in the true spherical space. Given the captured 360° video, its segmentation masks, and the
designed 4D spatiotemporal coordinates as inputs, our model predicts implicit spherical positions for generating spherical content
layers, providing each layer’s appearance for reconstruction. We incorporate bi-directional mapping by introducing an additional
pair of backward mapping MLPs to model the global motion of individual dynamic scenes, facilitating flexible 360° video editing.

ABSTRACT

Content-based 360° video editing allows users to manipulate
panoramic content for interaction in a dynamic visual world. How-
ever, the current related methods (2D neural representation and opti-
cal flow) show limitations in producing high-quality panoramic con-
tent from 360° videos due to their lack of capacity to model the inher-
ent spatiotemporal relationships among pixels in the true panoramic
space. To address this issue, we propose a Neural Panoramic Repre-
sentation (NPR) method to model the global inter-pixel relationships,
facilitating immersive video editing. Specifically, our method uti-
lizes MLP-based networks to learn spherical implicit content layers,
by encoding the spherical spatiotemporal positions and appearance
details within the panoramic video, and bi-directional mapping be-
tween the original video frames and the learned content layers, to
capture the interpretable and global omnidirectional visual charac-
teristics of individual dynamic scenes. Additionally, we introduce
innovative loss functions (spherical neighborhood consistency and
unit spherical regularization) to ensure the creation of appropriate
implicit spherical content layers. We further provide an interactive
layer neural panoramic editing approach based on the proposed NPR,
in the head-mounted display device. We evaluate this framework
on diverse real-world 360° videos, showing superior performance
on both reconstruction and consistent editing compared to existing
state-of-the-art (SOTA) neural representation techniques.

Index Terms: Virtual reality, immersive video editing, 360° video
manipulation, spherical content modeling.
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1 INTRODUCTION

Recent advances in mixed reality (MR) and virtual reality (VR)
have revolutionized how individuals can experience different parts
of the physical world virtually. This seamless immersion offers vast
potential across entertainment, education, and enriched experiences,
overcoming previous barriers of safety and cost [57]. The growth of
the metaverse has further fueled research in this field. The advent
of 360° videos offers a cost-effective way to capture and present dy-
namic real-world environments for MR and VR applications. Recent
research has established a solid foundation in capturing [30, 40], an-
alyzing [22, 47, 51], stabilizing [19, 44], and presenting [37, 46] 360°
videos, enabling high-quality, immersive content delivery. However,
current MR and VR applications based on 360° videos offer only
limited interaction capabilities, such as the ability to change view
angles and navigate within a confined area [7, 13]. This limits the
extent to which users can feel fully immersed in the experience.

This research focuses on content-based 360° video understanding
and editing, heightening the immersion of MR and VR applica-
tions, which enables users to interactively manipulate panoramic
video content. The main challenge is the absence of an effective
approach to learning the inherent spatiotemporal relationships within
the 360° video content. Although optical-flow-based approaches
show promise for editing tasks like video completion [25, 52], they
struggle with pixel-level operations like drawing strokes due to is-
sues like occlusions and drifting. Additionally, the absence of a
real-world panoramic optical flow dataset means that current 360°
optical flow technologies [22, 41] fall short of meeting the require-
ments for practical 360° video editing. Recent advances in deep
learning technologies enable self-supervised representation learning
to support temporally consistent video editing [17, 54]. However,
these methods are designed for 2D planar videos and do not con-
sider the unique spatial properties of 360° data. 360° videos repre-



sent signals across a spherical surface, which is non-developable,
as widely known from cartography [16]. This mathematical fact
implies that common sphere-to-plane projections (e.g., cubemap,
equirectangular projection, etc.) cannot produce entirely conformal
2D maps. These projections inherently suffer from distortion and
discontinuities. Consequently, existing 2D planar neural video repre-
sentations [17, 54] are inadequate for producing high-quality atlases
or consistent editing results in 360° videos. Recently, EgoNeRF [9]
introduced a neural spherical representation focusing on static scenes
for novel view synthesis. However, it still struggles with discontinu-
ity issues due to its design based on two separate hemispheres and
lacks editability. Thus, there is a need for a new editable spherical
representation for dynamic environments in 360° videos.

Motivated by this, we propose a neural panoramic representation
(NPR) method to model the inherent spatiotemporal relationships
among the spherical pixels in a 360° video, facilitating immersive
video editing in MR and VR applications. Unlike existing 2D neural
representation learning methods [17, 54], our approach eschews the
learning of planar layers, developing a network that directly acquires
the ability to model spherical surface layers for video representation.

Our method employs Multi-Layer Perceptron (MLP)-based net-
works to learn spherical implicit content layers, effectively capturing
the omnidirectional visual characteristics of the dynamic scene in the
360° video. The trained MLPs encode motion information for each
spherical content layer, enabling high-fidelity reconstruction of dy-
namic 360° video frames. The motion information encompasses the
movements of the foreground objects and any background changes
induced by camera motion. To ensure accurate encoding and inter-
pretation of individual motion information for different objects, we
begin by encoding appearance details into spherical content layers.
These layers are used to restore both foreground and background
elements within the panoramic view. Subsequently, the restored ele-
ments in different layers are combined by alpha-blending to generate
a seamless, full-frame panoramic image. Compared to an alternative
approach that segments a panoramic video into multiple perspective
videos and applies 2D learning techniques, our method excels in
generating globally consistent motion and appearance data while
circumventing the extra computational expenses associated with
integrating information from various perspectives. Additionally, we
introduce innovative loss functions, such as spherical neighborhood
consistency and unit spherical regularization, to ensure the creation
of appropriate implicit spherical content layers. To achieve intuitive
editing, we introduce a bi-directional mapping scheme allowing
global tracking to identify user-specifying regions in any frame to
apply customized edits. By training our NPR using this network
architecture, we empower the capability for spatially and temporally
consistent 360° video editing, overcoming fundamental limitations
and surpassing the performance of existing neural representation
techniques. Our contributions are summarized as follows:

• We propose a novel Neural Panoramic Representation (NPR)
that captures the inherent spherical spatiotemporal relation-
ships among 360° video elements, tackling the challenges in
existing video representations for handling 360° videos.

• We develop a learning framework for NPR, featuring innova-
tive loss functions and a bi-directional mapping scheme that
bridges a neural panoramic space with its original video space.

• We design a novel 360° video editing approach capable of
generating spatially and temporally consistent results.

2 RELATED WORK

360° Video Understanding. The progress of next-generation MR
and VR applications centered around 360° media hinges on advanc-
ing content understanding. Some recent efforts focused on proposing
novel deep architectures and learning schemes to encode the spa-
tial features of spherical pixels. Among these, temporal analysis is

crucial in 360° videos for capturing omnidirectional motion, distin-
guishing them from static images. Despite the effectiveness of 2D
optical flow estimation techniques [43, 45], extending their appli-
cability to wide field-of-view videos poses a persistent challenge.
Bhandari et al. [5] employed 2D flow projection onto equirectangu-
lar images as pseudo-ground truth for training, while Yuan et al. [55]
employed tangent images but faced boundary discontinuities. To
tackle discontinuities, Li et al. [22] introduced a framework com-
bining equirectangular, cube-padding, and cylindrical projections
to integrate motion information. However, the lack of a real-world
360° optical flow dataset and the limitation to adjacent frame motion
restricts flow-based editing. Efforts have been made in semantic
understanding and 3D information extraction from 360° data, includ-
ing depth estimation [1, 23, 47], normal estimation [26], semantic
segmentation [31, 53], and object detection [50]. However, compact
360° video representation learning remains underexplored.

Neural Video Representation. Using layered neural mapping de-
signs that bridge abstract or parametric proxies with video frames,
Layered Neural Atlas [17] and Deformable Sprites [54] show
promise in 2D planar video editing. This field has expanded to
applications such as text-driven video stylization [3, 28], deflick-
ering [20], and face video manipulation [27]. By using MLPs to
translate coordinates into color and volume density, Neural Radi-
ance Fields (NeRF) [32] advanced neural rendering and novel view
synthesis, inspiring numerous studies to address its limitations from
various aspects [4, 34, 36, 39]. Most recently, the 3D Gaussian Splat-
ting technique [18, 29] has been proposed to enable real-time view
synthesis. To provide such neural representations with editability,
various techniques have been introduced to enable modifications to
learned volumetric representations [6, 56, 60]. Existing NeRF-based
editing methods are primarily designed for static scenes learned
from 2D planar imagery. They fall short in representing 360° inputs
due to their lack of consideration for spherical properties. To tackle
this issue, Choi et al. [9] introduced EgoNeRF, a specialized neural
representation for static scenes in 360° videos. Deng et al. [11]
presented an egocentric sampling approach to construct radiance
fields, enhancing foveated rendering quality in VR applications. 360-
GS [2] and OmniGS [21], have expanded real-time omnidirectional
rendering applications. However, they face challenges with dynamic
objects and lack editibility in 360° videos. OmniLocalRF [10] fo-
cuses on reconstructing the inherent static scene in 360° videos by
removing dynamic objects. In contrast, we aim to fully capture the
dynamic environment in 360° videos, representing both static and
dynamic elements, thereby facilitating 360° video editing.

360° Content Manipulation. Zhu et al. [61] pioneered an inpaint-
ing method for 360° images, using structure-rectifying warping to
address distortions and applying 2D completion technique [15] to
fill gaps. Xu et al. [49] advanced this by considering spherical geom-
etry and iteratively restoring missing pixels and motion information.
Video stabilization techniques [19,44] have enhanced visual comfort
by reducing distortion in equirectangular representations. Zhang
et al. [58, 59] introduced edit propagation methods for global color
changes in 360° panoramas. Li et al. [24] integrated bullet comments
into 360° videos, and Wong et al. [48] devised a view-adaptive asym-
metric detail enhancement solution. To employ the benefits of 360°
data, neural illumination representations [12, 38] provide solutions
based on implicit neural models, reconstructing light information
by encoding the directions of spherical pixels to enhance inverse
rendering. Unlike these neural illumination models, our method fo-
cuses on learning interpretable spherical content layers by encoding
spatiotemporal positions, thereby expressing the detailed appearance
of dynamic 360° videos. While these existing 360° content ma-
nipulating approaches have demonstrated promise in specific tasks,
they fall short of providing a representation that maintains temporal
coherence across all elements of a dynamic scene, which is essential
for supporting consistent 360° video editing tasks.



3 METHODOLOGY

3.1 Overview
Our objective is to develop a specialized, editable representation for
360° videos, which is capable of simplifying 360° video manipu-
lation problems, such as tracking specific areas or objects, video
editing, and video completion. Unlike traditional 2D planar videos,
360° videos, captured via panoramic cameras or stitched from mul-
tiple planar captures, are distributed over a spherical surface and
intended for VR head-mounted displays. Editing these spherical
videos is more challenging due to the inability to view the entire
scene simultaneously in its native format.

Various projection methods enable mapping 360° videos onto
one or multiple planes. Equirectangular projection stands out as it
unwraps the entire scene into a rectangle, enabling the application
of 2D planar video editing techniques. However, this method intro-
duces significant distortion, particularly near the two poles, due to
the non-developable nature of spherical data, leading to inaccurate
deformations compared to the original spherical format. Hence, ex-
ploring learning-based representations on the unit spherical surface
shows promise for 360° videos. Such spherical data, characterized
by non-grid structure and non-uniform sampling, favor a coordinate-
based representation over grid-like approximations [54]. MLPs,
adept at handling coordinate-based inputs, are flexible in modeling
non-rigid motion in videos, as evidenced by recent studies [17, 32].

Motivated by these, we propose a spherical neural representation
NPR, using MLPs to create a continuous, global representation of
360° video frames, encoding both temporal information (timestamp
t) and spatial information (spherical positions and their color map-
ping). This model results in a compact and efficient embedding from
the original 4D space (time and 3D spherical positions) to an ed-
itable canonical 3D space, preserving the spherical properties of the
captured content while enabling direct visualization for user-centric
editing. This addresses the crucial challenge of maintaining content
correlation over time. Our framework is summarized in fig. 1.

3.2 Neural Panoramic Representation
Given an input 360° video, we represent the spatiotemporal position
of each pixel as a 4D point on a unit spherical surface. We obtain the
equirectangular coordinates (θ ,φ) of one video frame and convert
them to their 3D Cartesian coordinates (x,y,z) as follows:

x = cosφ cosθ , y = cosφ sinθ , z = sinφ , (1)
where x, y, and z are each bounded within the interval [−1,1], due
to their distribution on a unit sphere. To accommodate coordinate-
based computations, it is essential to discretize the continuous video
signal into an H×W pixel grid for each frame. Accordingly, we set θ

within [−π,π) and φ within [− π

2 ,
π

2 ). This arrangement strategically
excludes the boundary values θ = π and φ = π

2 , thereby preserving
the central points θ = 0 and φ = 0 that are crucial for accurate
representation in the equirectangular format. A timestamp t is added
as the fourth dimension, resulting in 4D spatiotemporal coordinates
(x,y,z, t), where t ranges from 1 to N, with N representing the total
frame count. These coordinates are structured into a matrix with
dimensions [4,H ×W ×N], serving as the input for further training,
where H and W denote the height and width of each frame.

Our neural panoramic representation (NPR) employs several
MLPs to map these 4D spatiotemporal coordinates to a canoni-
cal 3D space with multiple layers for different scene elements, like
the background or specific foreground objects. Through this method,
any point (x,y,z, t) in the given 360° video will be mapped into its
corresponding canonical point (x̂l , ŷl , ẑl)(l ∈ Z, l ≥ 0), with layer
number l determined by pre-segmentation. We also generate the
opacity M̂l(x,y,z, t) for each pixel in each layer to represent the
visible content of the background and foreground objects.

Given the distinct motion patterns between the background and
foregrounds, the NPR adopts a layered implicit representation, im-

plemented via the neural network F formulated as:

ĉ = FΘ(x,{Ml
x}l=0,1,2,...) (2)

x represents the 4D spatiotemporal coordinates (x,y,z, t). Ml
x is the

initial mask for x at layer l, set by pre-segmentation to reflect its
initial layer affiliation. This value can be refined during training to
compensate for any initial segmentation imperfections. ĉ denotes
the output color, and Θ is the set of parameters in F . To facilitate
the description, we assume a two-layer setup: the 0-th layer for the
background (b), and another for the foregrounds ( f ). This setup effi-
ciently addresses most real-world scenarios, accommodating scenes
with one foreground object or multiple objects exhibiting moder-
ate motion variations. In cases with multiple dynamic objects, we
combine them into a single foreground layer for streamlined learn-
ing, balancing computational efficiency with performance. When
specific editing operations for distinct objects are needed, more
foreground layers can be added with the same architecture.

Adhering to the assumed two-layer setup in our NPR frame-
work, network F employs two groups of MLP-based modules for
reconstructing the foreground and background of 360° video frames.
Within this dual-layer structure, the first MLP in each layer—M f p
for the foreground and Mbp for the background—maps the 4D spa-
tiotemporal coordinates to a 3D position x̂ = (x̂, ŷ, ẑ) in the neural
spherical space. The second MLP in each group, M f c for the fore-
ground and Mbc for the background, then recovers the respective
color information of x̂. The color reconstruction is formulated as:

ĉ f =M f c(x̂), ĉb =Mbc(x̂) (3)
Our model uses an opacity prediction module Mα for seamlessly

merging foreground and background. It determines optimal opacity
value at each 4D point x, enabling the final color reconstruction:

ĉ = (1− α̂)ĉb + α̂ ĉ f , (4)
where ĉ denotes the reconstructed pixel color, with ĉb and ĉ f be-
ing the predicted background and foreground colors. Pixel-wise
opacity value α̂ , learned in the foreground layer M̂ f (x,y,z, t), is
refined based on each pixel’s opacity value α on the pre-computed
frame-wise semantic masks using a SOTA video object segmentation
method [8]. Our learned NPRs establish dependable relationships
among spherical pixels, enhancing the accuracy of 360° video repre-
sentation and yielding more precise object motion estimations than
2D layered planar neural representations [17, 54].

3.3 Bi-directional Position Mapping for Modeling Global
Panoramic Motion

The above modules learn a one-directional mapping from 360◦ video
to neural panoramic space, namely f (x,y,z, t)→ (x̂, ŷ, ẑ), providing
neural panoramic positions at a specific time but cannot predict their
position movements in other frames. For example, a point P in a real
scene is located at (x1,y1,z1) at time t and (x2,y2,z2) at time t +1.
To obtain the corresponding neural panoramic coordinates (x̂, ŷ, ẑ),
both t and t+1 must be provided. This process does not allow direct
determination of positions in the different 360° video frames from
their implicit space positions. To address this and ease editing tasks,
we introduce bi-directional position mapping by adding an additional
pair of MLPs B f p and Bbp for foreground and background, to get
the real video position of point P for any time t. It implements the
backward mapping g(x̂, ŷ, ẑ, t)→ (x,y,z, t), from the learned neural
panoramic space back to the original video. We refer to M f p and
Mbp as the forward position mapping module, and B f p and Bbp as
the backward position mapping module. The backward mappings
are learned by solving the position-recovery problem for both the
foreground and background layers:

x′ = B f p(M f p(x), t), or x′ = Bbp(Mbp(x), t) (5)
This design enables global tracking for each pixel in any given

360° video, ensuring per-pixel correspondence across all frames.
As a result, users can perform edits directly on a specific frame



Figure 2: Illustration of our framework for the reconstruction and editing process. The user provides any time t, for example, t = 9 as shown in
the figure, the learned forward NPRs can reconstruct the corresponding video frame. In editing, by using the learned backward NPRs, we
generate the edited frames at any time t the user likes respecting their edits, such as adding a hand-drawn stroke (smile emoji) in this example.

rather than on an implicit content layer derived from a learned neural
panoramic representation. This module can automatically identify
the positions affected by edits on the implicit content layer, and then
map these changes to the corresponding areas in all other frames.

3.4 Training for Neural Panoramic Representation

Our training is self-supervised, involving forward and backward
mapping in two stages. In the forward mapping training, the primary
constraint is the minimization of reconstruction loss, defined as:

Lrec = ∑
s∈S

||cs − ĉs||22, (6)

s ∈ S is a point randomly sampled from the video, where S is the
whole set of sampled points per iteration. cs and ĉs are the original
colors in the input video and reconstructed colors, respectively. Sole
reliance on reconstruction loss is inadequate for effective inter-pixel
spatiotemporal relationships in spherical space, as training can be
dominated by target colors. For example, if two distinct points A
and B in one frame share a color, they might map to the same point
in the neural panoramic space. This does not hinder reconstruction
but limits editability, as any edit to A will cause the same edit to B.
To avoid this, we design the following two constraints: spherical
neighborhood consistency loss and unit spherical regularization.
Spherical Neighborhood Consistency (SNC) loss. For each point
in the scene described by the given 360° video, this loss aims to
constrain the effective one-to-one mapping between the original
space and neural panoramic space by preserving the relative position
with its eight-connected neighbors. In a spherical space, it is harder
to constrain the distance between any two points than on a plane,
but the direction vector from one point to another is easy to get
by subtracting their spatial coordinates. Thus, we use the spatial
direction vectors between each sampled point and its eight-connected
neighbors as the position self-supervision to constrain the relative
position in the target space. We define the SNC loss as:

Lsnc = ∑
i∈I

||(P−Pi)− (P̂− P̂i)||22, (7)

where I = {0,1,2, ...,7} is the index set for neighbors, P ∈R|S|×4 is
the sampled S positions in the original input video and each position
is a 4D spatiotemporal coordinate, Pi is one of the neighbors of
P in the original input video, P̂ ∈ R|S|×3 and P̂i are the predicted
positions in the neural panoramic space.
Unit Spherical Regularization (USR). The predicted 3D coordi-
nates of any one implicit content layer are expected to distribute
on a unit spherical surface, rather than deviate from this surface
by any significant amount. As mentioned in section 3.2, the input
4D coordinates of each layer are on a unit spherical surface and in
the range [−1,1]. We could force the forward mapping outputs to
be in [−1,1] by setting the activation function of the output layer.
However, points with the 3D Cartesian format in [−1,1]3 do not
distribute on a unit spherical surface, some lie inside the sphere
body and some outside. To this end, we introduce a unit spherical
regularization to encourage the learned implicit 3D coordinates from
MLPs to lie on a unit spherical surface, which is defined by:

Lusr = ∑
s∈S

∥∥∥∥
√

(P̂s1)2 +(P̂s2)2 +(P̂s3)2 −1
∥∥∥∥

2

2
, (8)

where P̂s1, P̂s2, and P̂s3 are the neural panoramic space axes, akin to
the standard 3D Cartesian system’s x-, y-, and z-axes.

The predicted opacity value of the foreground is crucial for video
reconstruction. To ensure consistency with input masks over the
frames, we introduce alpha loss for self-supervision, formulated as:

Lal pha =−∑
s∈S

αs · log(α̂s)+(1−αs) · log(1− α̂s), (9)

Initialization. We implement a warm-start to initialize M f p and
Mbp with the spherical positions of each video frame within the
4D spatiotemporal coordinates, as mentioned in section 3.2. This
approach strategically positions each NPR on a unit spherical surface,
providing a standardized starting point for training. Additionally,
we initialize Mα close to the pre-computed alpha values, facilitating
the effective learning of NPRs for distinct content layers.
Detail Enhancement via Positional Encoding. Considering that
deep networks are typically biased towards learning lower-frequency



Methods LNA Deformable Sprites EgoNeRF EgoNeRF+t Ours (NPR)
Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Walking Boy 36.21 0.923 0.141 28.75 0.819 0.213 31.72 0.905 0.267 35.05 0.923 0.231 38.88 0.955 0.091
Walking Girl 32.35 0.922 0.138 23.45 0.778 0.234 27.52 0.897 0.268 34.09 0.932 0.181 35.38 0.934 0.112
Classroom 37.32 0.970 0.091 31.68 0.946 0.089 * * * * * * 40.01 0.974 0.068

Farm 36.73 0.938 0.109 31.00 0.912 0.099 * * * * * * 39.04 0.968 0.054
Towers 30.55 0.886 0.174 25.49 0.772 0.276 27.70 0.901 0.247 32.79 0.888 0.214 33.73 0.924 0.114

Bus Stop 36.04 0.964 0.071 29.49 0.945 0.072 * * * * * * 39.34 0.973 0.048
Tram 31.18 0.903 0.177 22.90 0.742 0.317 26.53 0.865 0.312 31.41 0.916 0.221 32.93 0.917 0.149

Motorcycle 29.59 0.850 0.234 23.03 0.656 0.396 27.55 0.844 0.335 31.05 0.902 0.255 30.13 0.852 0.224
Elephant 35.41 0.957 0.099 30.17 0.884 0.112 * * * * * * 37.58 0.969 0.076
Average 33.93 0.924 0.137 27.33 0.828 0.201 28.20 0.882 0.286 32.88 0.912 0.220 36.34 0.941 0.104

Table 1: Average PSNR, SSIM, and LPIPS for each video are presented, with the last row indicating the overall averages for the entire dataset.
For some videos, EgoNeRF cannot reconstruct the scene due to the static camera position, hindering camera pose extraction by OpenMVG.

(a) Original Frame (b) LNA (c) Deformable Sprites (d) EgoNeRF (e) EgoNeRF+t (f) Ours
Figure 3: Qualitative comparisons of reconstruction on several real-world 360° videos. Refer to our supplementary video for the full results.

functions [35], we employ positional encoding (PE) techniques
to map input positions to a high-dimensional space, ensuring that
even closely situated positions retain unique characteristics. This
strategy enables the model to differentiate positions while recog-
nizing their proximity or similarity, thereby aiding in the capture
of high-frequency details. Given the unique 4D coordinates of
each input spherical pixel, PE is not necessary for the position
mapping MLPs, M f p and Mbp. However, since distinct spheri-
cal positions might display similar color or opacity values, PE is
crucial for the color mapping MLPs, M f c and Mbc, and the al-
pha prediction MLP, Mα . This application of PE enhances the
capture of high-frequency appearance details influenced by subtle
differences among implicit spherical positions, preventing an overly
smooth appearance. To balance efficiency and performance, we
opt for a fixed sinusoidal positional encoding function defined as
PE(x) = sin(2dπx),cos(2dπx),d = 0, ...,D, which avoids the need
for additional learnable parameters and mitigates the higher compu-
tational demands and parameter sensitivity associated with learnable
functions or wavelet transformations.
Bi-directional Training Scheme. Our model learns two mappings:
forward and backward. The forward mapping encodes 4D spatiotem-
poral positions into 3D implicit positions within a canonical content
space through self-supervision and regularization, unaffected by
the backward mapping. The backward mapping converts these 3D
positions back to the original video space. To avoid interference
and unnecessary complications, we train these mappings sequen-
tially—first forward, then backward—instead of simultaneously.

3.5 Layered Neural Panoramic Editing
Our framework of the reconstruction and editing process is shown
in fig. 2. Post-training, we obtain multiple learned MLPs forming a
dynamic representation for 360° video reconstruction and editing at
any time. Unlike previous neural video representations [17, 54] that
rely on abstract texture maps, making meaningful edits challenging
due to the lack of actual appearance, our model enables direct editing

on original frames using the learned NPRs, offering a more practical
and user-friendly approach for 360° video editing. Leveraging bi-
directional position mapping, as mentioned in section 3.3, users can
choose any frame at time t (e.g., t = 6 in the figure) for precise
pixel-level editing. This involves mapping edits to implicit positions
via forward NPRs (M f p and Mbp) and then adjusting corresponding
pixels across all frames using backward NPRs (B f p and Bbp). After
specifying whether the edits should be applied to the foreground or
background, users can perform a variety of edits, such as adding
strokes (e.g., a hand-drawn smile emoji in the figure), applying
graphic overlays, and removing elements. The learned NPRs will
identify the required editing locations, allowing seamless integration
of these changes throughout the video sequence.

4 EXPERIMENTS

4.1 Implementation Details

Configurations. Our framework, depicted in fig. 1, includes several
MLPs, each comprising 8 linear layers. Each hidden layer is config-
ured with 256 channels. We assign the dimensions D of positional
encoding as follows: 10 for M f c and Mbc, and 5 for Mα . The empir-
ical trade-off coefficients of our losses are: wrecon = 1.0, wsnc = 0.1,
wusr = 10.0, and wal pha = 10.0. All experiments described in this
paper were conducted on an NVIDIA GeForce RTX 3080 GPU.
Dataset. Due to the lack of publicly accessible real-world 360°
video datasets featuring significant object and camera motion, we
developed a new dataset to evaluate our approach. This dataset
consists of nine real-world 360° videos captured by a fixed or moving
spherical camera, with each video containing 30 frames.
Baseline Methods. We evaluated the effectiveness of our method
in reconstructing 360° videos by comparing it with SOTA neural
representations: Layered Neural Atlases (LNA) [17], Deformable
Sprites [54], and EgoNeRF [9]. LNA learns an implicit represen-
tation to map planar video frames onto a 2D plane in neural space,
while Deformable Sprites uses learnable B-Splines to model non-



(a) Original Frame (b) Edited Video Frames
Figure 4: Results of 360° video editing: Each row shows an original frame on the left and three sampled frames from edited videos on the right.

rigid transformations in planar videos. EgoNeRF, designed with yin-
yang feature grids in spherical coordinates, represents static scenes
in 360° videos. We also compared our method with EgoNeRF+t,
a straightforward extension of EgoNeRF for dynamic scenes, by
directly incorporating a time dimension into yin-yang feature grids.
Evaluation Metrics. We selected well-recognized visual quality
metrics, including PSNR, SSIM, and LPIPS, for the quantitative eval-
uation of our reconstruction performance against baseline methods.
For qualitative assessment, we displayed reconstructed frames. In
the context of 360° video editing, where no established metrics exist,
we demonstrated our consistent editing performance with various
edited videos alongside their original frames.

4.2 Comparison with Baseline Methods
Since two of the baseline methods, LNA [17] and Deformable
Sprites [54], are designed for 2D planar videos, we adapted these
models to handle 360° video inputs using equirectangular projection
(ERP). This adjustment allows us to treat ERP videos as 2D pla-
nar formats through the use of image coordinates. To ensure a fair
comparison, we aligned our model’s training parameters with those
of LNA, involving 10,000 sample points per iteration for a total of
300,000 iterations. Another baseline method, EgoNeRF, tailored
specifically for 360° videos, concentrates on 3D scene representation.
However, it cannot separate foregrounds from backgrounds using
layered representations due to its dependency on precise camera

pose information. This limitation is exacerbated by the inadequate
textural features of separated foregrounds, which impede effective
pose extraction. For EgoNeRF’s evaluation, we adhered to its na-
tive setup and utilized OpenMVG [33] to extract spherical camera
poses from our dataset, as detailed in its foundational paper. For
EgoNeRF+t, a dynamic extension of EgoNeRF, we implemented it
by building upon EgoNeRF with an additional time dimension.

The quantitative and qualitative comparison results for the 360°
video reconstruction task are presented in table 1 and fig. 3. Our
method consistently achieves superior average metrics across the
reconstructed videos, enhancing visual details such as sharper wall
textures, defined building edges, intact street lamp structures, and
clearer distant objects. Notably, our approach excels in modeling
subtle motions in both foreground and background elements, effec-
tively capturing reflections, shadows, and other real-world effects in
dynamic scenes. In the first example shown in fig. 3, our proposed
model accurately captures and globally represents the motion of
a walking boy, successfully reconstructing appearance details in
each frame. While EgoNeRF performs well in reconstructing static
backgrounds, it fails to accurately capture moving objects in all
examples, as it treats scenes as static and lacks effective mechanisms
for handling foreground motion. EgoNeR+t mitigates the blurriness
in dynamic regions compared to EgoNeRF, but it exhibits grid-like
blurring on less textured dynamic parts, such as the human face, as
demonstrated in the third example in fig. 3.



(a) Edit on an Original Frame (b) Intermediate Result (c) Edited Video Frames (t = 1,23)
Figure 5: An intermediate result of adding a red stroke to the foreground (a car): (a) A specific frame showing the stroke edit applied to the
moving car. (b) The intermediate result on the learned canonical content layer, foreground NPR. (c) Edited frames based on the user’s edit.

(a) Foreground NPR (b) Background NPR (c) Reconstructed Video Frame (d) Edited Video Frame
Figure 6: Qualitative results of an ablation study on a real-world 360° video (Walking Girl): Effects of ablating each designed loss term.

4.3 Results of 360° Video Editing

Our proposed neural panoramic representation (NPR) method mod-
els the spatiotemporal relationships among pixels in 360° videos
using neural spherical layers, thereby facilitating consistent and flex-
ible editing operations. Fig. 2 and fig. 4 show several video editing
results of our method, with various effects, including adding strokes,
applying graphic overlays, changing the appearance of certain inter-
est areas, and removing the foreground (video completion).

The editing process illustrated in fig. 2 demonstrates the seamless
integration of a hand-drawn cartoon smile emoji onto a dynamic fore-
ground object—the left tower—ensuring an exact fit. Our method
excels in editing both dynamic foreground objects, which pose chal-
lenges due to their variable dynamics, and static background regions.
This versatility is showcased in fig. 4, where each row highlights
a distinct editing achievement: (1) The first row shows a uniform
enhancement by applying a purple highlight to both a rider and his
motorcycle, maintaining consistency throughout the video. (2) The
second row demonstrates our ability to make a car disappear from
the road while realistically reconstructing the occluded background.
(3) The third row features the consistent addition of the text stroke
“okay” onto a moving car, aligned with the car throughout the video.
(4) The fourth row presents the effective integration of graffiti onto a
walking boy, demonstrating dynamic scene adaptation. (5) The fifth
and sixth rows highlight our precise content mapping in adding graf-
fiti to the background, resulting in believable and stable edits. These
examples underline our method’s success in delivering meaningful,

spatiotemporally consistent edits in 360° video editing.
To demonstrate the effectiveness of our proposed bi-directional

mapping module, we present an intermediate result in one of the
learned implicit content layers (foreground NPR on the video “Bus
Stop”) in fig. 5. This figure visualizes the points on the foreground
NPR affected by the user’s edits in the sixth frame. It clearly shows
that an added red stroke is accurately mapped across the correspond-
ing affected pixels in other frames.

4.4 Ablation Study
We evaluated the impact of our designed loss terms within the pro-
posed framework by observing their effects on reconstruction and
editing performance during an ablation study (fig. 6 and table 2).
The omission of the Spherical Neighborhood Consistency (SNC)
loss, detailed in the first row, resulted in noticeable dislocation issues
in the background NPR, especially in large areas like the ground.
This occurred because the implicit neural panoramic space allocated
fewer points to these regions, resulting in a loss of inter-pixel spatial
relationships. In the second row, we noted that removing the Unit
Spherical Regularization (USR) loss caused dynamic objects in the
reconstructions to appear as if they were behind transparent glass or
showed disturbing depth of field effects. This observation suggests
that some points in the implicit space deviated from the unit spheri-
cal surface, leading to inaccurately layered spherical representations.
The third row demonstrates the consequences of excluding the alpha
loss, which resulted in an incorrect foreground mask. Pixels that
should have been identified as background were incorrectly included



(a) Original Frame (b) w/o PE (c) Wavelet-based PE (d) Learnable Sine PE (e) Fixed Sinusoidal PE
Figure 7: Qualitative results of an ablation study on a real-world 360° video (Walking Boy): Effects of absence and different PE functions.

as part of the transparent foreground, which could confuse users dur-
ing video editing. Although eliminating the alpha loss led to higher
metrics in table 2, retaining this loss is essential. It plays a cru-
cial role in accurately separating spherical content layers, enabling
clearer and more reasonable edits in 360° videos. Furthermore, it is
crucial to note the significant risk of overfitting associated with the
removal of any of these loss terms, especially the alpha loss. While
the impact on reconstruction quality may be minimal in scenes pri-
marily composed of sky, grass, or water, the overall consistency in
360° video editing performance could be adversely affected.

Ablating Loss PSNR ↑ SSIM ↑ LPIPS ↓
w/o SNC Loss 31.86 0.908 0.151
w/o USR Loss 34.68 0.933 0.113

w/o Alpha Loss 37.03 0.941 0.105
Complete Model 35.38 0.934 0.112

Table 2: Quantitative results of an ablation study on designed loss
terms using all nine real-world 360° videos in our dataset.

In another ablation study, we assessed the impact of different
positional encoding (PE) techniques, including the absence of PE,
to clarify our choice. We explored three types: a fixed sinusoidal PE
function as outlined in section 3.4, a wavelet-based PE applying a 1D
discrete wavelet transform to each dimension of our 4D inputs, and
a learnable periodic activation function, sin(ωi × x) (cited in [42]).
The fixed sinusoidal and wavelet-based PEs were applied before
training, while the learnable PE was adjusted during training. Results
in table 3 show that the fixed sinusoidal PE not only outperformed
other methods across all metrics with only a modest increase in
training time but also provided the most detailed appearances in
fig. 7, capturing high-frequency details more effectively than other
approaches. While the learnable sine PE offered acceptable results
with similar training time, it was the second-best option. In contrast,
the wavelet-based PE resulted in the poorest visual quality, and the
absence of any PE led to overly smooth regions, emphasizing the
need for PE to preserve details in complex images. Consequently,
the fixed sinusoidal PE emerges as the superior choice for enhancing
the model’s capability to handle detailed appearances.

PE Functions PSNR ↑ SSIM ↑ LPIPS ↓ Train Time ↓
w/o PE 29.88 0.848 0.239 20 hours

Wavelet-based 26.30 0.755 0.313 1 week
Learnable Sine 35.28 0.936 0.108 22 hours

Fixed Sinusoidal 36.34 0.941 0.104 24 hours

Table 3: Quantitative results of an ablation study on PE functions.

5 DISCUSSION

Model Scalability for Higher Resolution Videos. The results
in this paper are derived from models trained on 480×240 360°
videos. The alpha prediction MLP Mα comprises 405,505 parame-
ters. The position and color mapping MLPs for each content layer
have 397,839 and 426,679 parameters, respectively. Our method
demonstrates notable scalability to higher resolutions; for instance,
training on a 960×480 video requires quadrupling the time, scaling
approximately linearly with the increase in pixel count. The main

advantage of our layer representation lies in facilitating intuitive
user edits by specifying the content to be edited at different layers.
Even with imperfect initial foreground segmentation, our approach
consistently achieves high-quality reconstruction results. Tests with
alternative segmentation methods [14], indicate similar performance,
suggesting a reduced dependency on precise foreground segmenta-
tion. In our preliminary experiments, we observed that the MLPs
effectively represent and reconstruct 360° videos without needing to
segment the video into layers, thanks to their capability to fit contin-
uous functions and model pixel-wise motion. However, excessive
motion components within a single layer necessitate additional net-
work layers, significantly elevating computational costs. Separating
the video into layers not only enhances the manageability of motion
components but also reduces overall training time.
Achieving Global Motion: Advantages Over Optical Flow. We
discuss the differences between our method and optical flow ap-
proaches in terms of modeling the motion in the dynamic scene, to
highlight our merits. Optical flow describes the motion between
two adjacent frames, which is a kind of local correspondence in
the temporal domain, and thus it could not support the holistic un-
derstanding of the scene of the given video. Compared to that, we
leverage MLPs to record the global correspondence that represents
a holistic spatiotemporal relationship of the dynamic scene in the
given 360° video, describing motions over time globally. The base-
line methods we compared, LNA [17] and Deformable Sprites [54],
already utilize optical flow as guidance, showing inferior results to
ours due to the accumulated error in frame-to-frame optical flow.
Additionally, state-of-the-art optical flow models [22,41,45] struggle
to provide accurate results on various real-world 360° videos.

6 CONCLUSION

We propose the first neural representation for 360° videos that sup-
ports spatiotemporally consistent, immersive pixel-level editing. Dis-
tinct from existing methods tailored for 2D planar videos, our ap-
proach empowers neural networks to effectively capture spherical ap-
pearances. The innovative bi-directional mapping facilitates global
content tracking in dynamic panoramic scenes. This advancement
enables more convenient 360° video editing by providing an inter-
pretable content representation, allowing users to intuitively specify
regions or objects for customized modification. It shows promise
for a wide range of users, regardless of their VR or video editing
experience. Experimental results on real-world 360° videos validate
our model’s effectiveness, showcasing superior reconstruction and
achieving spatiotemporally consistent 360° video editing.
Future Work. Our method specializes in pixel-wise appearance
edits for panoramic videos with dynamic objects, however, it cur-
rently lacks the capability to model the temporal information of
object motion. In the future, we plan to integrate a temporal mod-
eling component to more effectively encode motion information
within our video representation. This enhancement will expand the
applicability of our method, enabling functionalities such as video
prediction and timeline editing.
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