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Figure 1: We propose RTR-GS, a framework for geometry-light-material decomposition from multi-view images. Our method
significantly enhances normal estimation and visual realism for reflective surfaces compared to GS-IR [31] and GShader
[22]. Additionally, we achieve material and lighting decomposition while accounting for secondary lighting effects through
physically-based deferred rendering. The material components include albedo, metallic, and roughness. This high-quality

decomposition enables realistic relighting and material editing.

ABSTRACT

3D Gaussian Splatting (3DGS) has demonstrated impressive capabil-
ities in novel view synthesis. However, rendering reflective objects
remains a significant challenge, particularly in inverse rendering
and relighting. We introduce RTR-GS, a novel inverse rendering
framework capable of robustly rendering objects with arbitrary
reflectance properties, decomposing BRDF and lighting, and deliv-
ering credible relighting results. Given a collection of multi-view im-
ages, our method effectively recovers geometric structure through
a hybrid rendering model that combines forward rendering for radi-
ance transfer with deferred rendering for reflections. This approach
successfully separates high-frequency and low-frequency appear-
ances, mitigating floating artifacts caused by spherical harmonic
overfitting when handling high-frequency details. We further refine
BRDF and lighting decomposition using an additional physically-
based deferred rendering branch. Experimental results show that
our method enhances novel view synthesis, normal estimation, de-
composition, and relighting while maintaining efficient training
inference process.

CCS CONCEPTS

« Computing methodologies — Rasterization; - Point-based
models; « Machine learning approaches; » Rendering;
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1 INTRODUCTION

Inverse rendering is a long-standing challenge that seeks to de-
compose a 3D scene’s physical attributes—geometry, materials,
and lighting—from captured images. This decomposition enables
downstream tasks such as relighting and editing. The problem is
particularly challenging due to the complex interplay of these at-
tributes during rendering, especially under unknown illumination
conditions, which make it inherently under-constrained. Neural
Radiance Fields (NeRF) [36] have achieved remarkable success in
novel view synthesis, laying the groundwork for inverse rendering.
Methods such as [7, 32, 62, 64] use implicit neural representations,
like Multi-Layer Perceptrons (MLPs), to decompose physical com-
ponents. However, MLPs suffer from limited expressiveness and
high computational costs, making it challenging to balance qual-
ity and efficiency. 3D Gaussian Splatting (3DGS) [25] improves
both the speed and quality of learning-based volumetric rendering,
and several methods [16, 31, 43] have integrated physically-based
rendering into this framework. However, spherical harmonic func-
tions lack the directional resolution needed to accurately represent
specular reflections, and overfitting during Gaussian splatting and
cloning can introduce floating artifacts.

Accurate geometry is crucial for decomposing materials and
lighting from complex appearances. However, high-frequency de-
tails can cause overfitting, leading to floating artifacts that deviate
from physically smooth surfaces and compromise geometric ac-
curacy. To address this issue, we propose using a reflection map
to store specular components, isolating high-frequency appear-
ance details from the radiance component to mitigate overfitting.
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Additionally, we replace independent spherical harmonics with
radiance transfer rendering, which imposes stronger global low-
frequency constraints when computing radiance components. By
separating high-frequency and low-frequency appearances, our
method enables accurate recovery of geometric structures with ar-
bitrary reflectance properties. Following geometry reconstruction,
we model occlusion and indirect illumination by baking visibility
into 3D voxels and introducing indirect lighting parameters. This
approach reduces aliasing artifacts in albedo, shadows, and lighting
during decomposition. Finally, we achieve effective material and
lighting decomposition by integrating an additional differentiable,
physically-based deferred rendering branch.

The primary contribution of our work is the introduction of
a Gaussian splatting-based inverse rendering framework, RTR-
GS, which accurately estimates surface normals, bidirectional re-
flectance distribution functions (BRDF), and environmental lighting
from multi-view images of both diffuse and specular objects. Specif-
ically, it includes the following key aspects:

e We propose a 3DGS-based hybrid rendering model that
integrates reflection maps with radiance transfer, effec-
tively separating high-frequency and low-frequency ap-
pearances. This enables efficient rendering of objects with
arbitrary reflectance properties while reducing floating arti-
facts, thereby improving geometric structure recovery with
high-quality normals.

e We further enhance appearance decomposition through
a dual-branch rendering approach, enabling efficient and
accurate material and lighting decomposition via rational
lighting modeling and occlusion data baked into 3D voxels.

o Comprehensive experiments demonstrate that our method
achieves state-of-the-art performance in novel view syn-
thesis and relighting, producing credible results for both
diffuse and specular objects.

2 RELATED WORK

2.1 Neural representations

Recent advancements in Neural Radiance Fields (NeRF) [36] have
garnered significant attention. Subsequent research has focused on
enhancing rendering quality [2, 4, 26], improving surface recon-
struction [29, 47, 54], and advancing object generation [11, 40, 49,
59], among other areas. Additionally, some methods aim to balance
speed and quality [10, 12, 15, 20, 37, 45], facilitating more efficient
evaluations.

3D Gaussian Splatting [25] effectively combines radiance field
rendering with rasterization by leveraging discrete Gaussian dis-
tributions and the splatting technique. Subsequent research has
focused on enhancing rendering quality [33, 57], more accurate
geometry reconstruction [21, 35, 58], expanding editability [34, 60],
and increasing scalability [39]. However, these methods do not
decompose appearance into materials and lighting, limiting their
suitability for relighting and editing tasks.

2.2 Inverse rendering

Inverse rendering aims to decompose physically-based attributes
from observations, including geometry, material, and lighting. A
variety of methods simplify this problem by assuming controllable
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lighting conditions [1, 5, 6, 17, 41]. Some works relax these as-
sumptions to consider direct lighting effects [7, 8, 62]. These works
[13, 51, 53, 61, 64, 65] model secondary lighting effects using ad-
ditional MLPs. To reduce computational overhead, some methods
[23, 28] employ tensor decomposition techniques inspired by Ten-
soRF [12]. For compatibility with existing rendering pipelines, NvD-
iffrec [38] and NvDiffrecMC [19] utilize differentiable rendering
with rasterization or ray-tracing pipelines.

Methods based on 3D Gaussian Splatting (3DGS) have signifi-
cantly accelerated training and rendering. GS-IR [31], GIR [43], and
R3DG [16] constrain surface normals using pseudo normals derived
from depth and model shadows and indirect lighting through bak-
ing or ray-tracing. By leveraging pre-computed radiance transfer,
PRT-GS [18] enables relighting, including secondary lighting effects.
Phys3DGS [14] integrates 3D Gaussian splats with mesh-based rep-
resentations. Although these methods retain the high efficiency of
3DGS, using spherical harmonic functions as a radiance represen-
tation for geometry recovery often introduces floating artifacts on
reflective surfaces, leading to geometric inaccuracies.

2.3 Reflective object reconstruction

Reconstructing reflective objects poses a significant challenge in
inverse rendering tasks due to the high-frequency appearance
changes that result in view inconsistencies. Ref-NeRF [46] tries
to address this by using reflection directions instead of view di-
rections and introducing Integrating Direction Encoding (IDE) to
model reflections effectively. NeRO [32] explicitly models the re-
flection process. Spec-Gaussian [52] simulates reflections using
anisotropic Gaussians. Deferred rendering approaches, such as De-
ferredGS [50], 3DGS-DR [55], GS-ROR [66], and GUS-IR[30] replace
forward rendering to better handle reflections. GaussianShader [22]
separates specular components and incorporates residual terms to
capture secondary lighting effects. Additionally, PRD-GS [56] in-
troduces progressive radiance distillation.

Inspired by these works, we adopt 3D Gaussians as the scene
representation and develop an inverse rendering framework capable
of effectively rendering object with arbitrary reflectance properties
while also decomposing material and lighting components.

3 METHOD

3.1 Overview

Figure 2 illustrates the overall framework of the proposed RTR-GS.
We initialize 3D Gaussians using sparse point clouds generated
randomly or estimated by COLMAP [42]. To model reflections, it is
essential to define the normals for the Gaussians. We define normals
as the shortest axis of each Gaussian, oriented toward the viewing
direction, and optimize them synergistically using deferred render-
ing of reflections and pseudo-normals derived from a depth map
(Sec. 3.2). Subsequently, we refine the Gaussians by introducing
additional parameters and integrating key components into a hy-
brid rendering model (Sec. 3.3). This model combines radiance from
forward rendering with reflections from deferred rendering, effec-
tively separating high-frequency and low-frequency appearances to
better represent complex materials and achieve high-quality scene
reconstruction. Next, we decompose the appearance using differen-
tiable physically-based deferred rendering, incorporating occlusion
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Figure 2: RTR-GS Rendering Pipeline. Our rendering pipeline consists of a hybrid rendering branch and a physically-based
rendering branch. The hybrid rendering branch computes the radiance color for each Gaussian using forward rendering through
radiance transfer, which is then blended with the reflections from deferred rendering after splatting. The physically-based
rendering branch is fully implemented during the deferred rendering phase. Initially, the hybrid rendering branch reconstructs
the fundamental geometric structure and stores visibility in voxel grids. The physically-based rendering branch is then activated
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to further decompose material appearances.

baking, indirect lighting modeling, and additional BRDF parameters.
During this process, we employ two rendering branches simulta-
neously to refine the geometry (Sec. 3.4). Finally, we enhance the
results through rendering losses and additional regularization terms
(Sec. 3.5).

3.2 Deferred Rendering and Normal Modeling

In the 3DGS framework, the attributes of multiple Gaussians are
blended in the image plane using splatting and alpha blending, as
follows:

N
Ir=>" fieiT; 1)
i=0

where a; is the opacity, T; = [] ;;} (1 - a;) represents the accumu-
lated transmittance, f; denotes the parameters of the i-th Gauss-
ian, and I represents the splatted screen-space attribute buffer. In
vanilla 3DGS [25], outgoing radiance is computed per-Gaussian
before blending. This process is referred to as forward rendering.
Additionally, the attributes associated with each Gaussian can be
transformed into screen space for subsequent shading, a process
known as deferred rendering. The following section explains our
normal design and optimization based on the deferred rendering
implementation.

Accurate normals are essential for modeling reflection. We define
the normal direction as the shortest axis of the Gaussian. During
the optimization process, the Gaussian shape typically flattens as
it aligns with the surface, causing the shortest axis to correspond
to a larger area. Similar to GS-IR [31] and R3DG [16], we optimize
normals by enforcing consistency between the pseudo-normal map

g, derived from the depth map, and the Gaussian normals map n,
as follows:

Ln = [In—1Agll2 @

This constraint is effective in optimizing normals when the depth
map is smooth enough. Additionally, normals are used to compute
reflection directions and contribute to deferred rendering. This pro-
cess enables rendering losses to be backpropagated to the normals,
refining the Gaussian shape. When specular reflection is dominant,
rendering losses from reflections primarily drive normal optimiza-
tion. Conversely, in diffuse regions, depth-derived pseudo-normals
impose a stronger constraint. Figure 3 illustrates the normal op-
timization process. Inspired by 3DGS-DR [55], we also introduce
a simplified normal propagation mechanism that periodically en-
hances Gaussian opacity, improving the model’s robustness against
extreme specular reflections.

3.3 Hybrid Rendering and Radiance Transfer

To effectively render appearances with diverse variations and to
mitigate Gaussian floating artifacts caused by limited representa-
tion capability, we propose a hybrid rendering approach to replace
the spherical harmonics-based forward rendering in 3DGS [25]. Our
hybrid rendering model separates radiance and reflection to cap-
ture low-frequency and high-frequency components, respectively.
Specifically, the radiance is computed using forward rendering,
while the reflection is obtained through deferred rendering. The
two components are then adaptively blended based on the reflection
intensity as follows:

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348



362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

MM °25, October 27-31, 2025, Dublin, Ireland

m—p Forward Flow
Backward Flow

Pseudo Normal

Rendering Loss

S,

Loy, * T
S .. o
N\ r 4
—_—
3D Gaussians

Normal

Deferred
Shading

Figure 3: By adjusting the shapes of the Gaussians using the
pseudo normals and gradients from the reflection map, the
normals are optimized.

Irgb =Cr- (1~O_Ri)+cref'Ri (3

where C; is the radiance color, Gy is the reflection color, and
R; is the reflection intensity. The final blending is done in screen
space. Further details on the reflection and radiance components
are provided in the following sections.
Reflection. In forward rendering, BRDF lobes are computed indi-
vidually using the respective normal of each Gaussian and are then
blended after shading. However, this blending process broadens
the final BRDF lobe, resulting in blurry rendering effects. In con-
trast, deferred rendering generates a single BRDF lobe based on the
blended normal, providing higher precision and better preservation
of BRDF sharpness. Similar observations have been analyzed in
GUS-IR [30] and GS-ROR [66].

For each Gaussian, we introduce additional reflection attributes
for deferred rendering: reflection tint R; and reflection roughness
R;. We adopt a microfacet BRDF to simulate surfaces with varying
roughness levels and achieve efficient computation using the split-
sum approximation [24]. The final reflection color is computed
as:

Cref =Ri - Frep(Er, Rr,m,v) (4)

where E; is a learnable reflection map, n and v denote the normal
and the view direction, respectively. F,  represents the split-sum
approximation [24], which will be explained in more detail in Sec-
tion 3.4.
Radiance. Inspired by Precomputed Radiance Transfer (PRT) [44],
we adopt radiance transfer instead of spherical harmonics to com-
pute outgoing radiance. Firstly, we will describe how radiance trans-
fer is used to shade each Gaussian, including both view-independent
and view-dependent components. Then we will explain the moti-
vation behind using radiance transfer.

The view-independent component is consistent with the radi-
ance transfer rendering in PRT. This calculation approximates the
diffuse part of rendering equation as a dot product of two vectors
as follows:

nZ
Ca = PdZCjC§ (5)

j=0
where pg represents the diffuse base color, c; denotes the coeffi-
cients of the spherical harmonics lighting, and cj. represents the
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transfer vector. Notably, all Gaussians share the same spherical
harmonics lighting c; but use individual transfer vector cj..

For the view-dependent component, following the derivation in
PRT [44], we need to compute a radiance transfer matrix to convert
environmental lighting into transferred lighting. However, n-order
spherical harmonics lighting requires n? parameters to store the
transfer matrix, leading to rapidly increasing storage costs as the
number of Gaussians grows. To address this issue, we adopt neural
radiance transfer for the view-dependent component and compute
it in a manner similar to the view-independent case. Specifically, for
each Gaussian, we introduce a set of randomly initialized radiance
transfer features f; and a specular base color ps. We decode f; and
the reflection direction o using a lightweight MLP G to obtain the
neural radiance transfer vector cj. (0). The view-dependent outgoing
radiance is computed as:

n?

Cs(0) ~ ps ) cjct(0), with cf(0) =G(fi0)  (6)

=0

The total outgoing radiance is given by C, = C;4+Cs(0). After Gauss-
ian splatting and blending, this radiance further participates in the
blending process during deferred rendering. A detailed derivation
of our radiance transfer implementation is provided in the supple-
mentary materials.

Compared to spherical harmonics, radiance transfer allows us
to maintain enougth representational capacity while providing
stronger global low-frequency constraints. In the shading process,
all Gaussians share two global components: the spherical harmon-
ics lighting c; and the MLP G. This design enables shading across
Gaussians to be connected through shared components, promoting
the representation of overall low-frequency variations. Meanwhile,
each Gaussian has its own independent transfer vector and transfer
features, along with base color attributes. This enables our radiance
transfer representation to better handle components that are diffi-
cult to recover in the reflection part, such as local reflections and
shadows. Figure 4 illustrates the differences between our radiance
transfer representation and spherical harmonics in modeling the ra-
diance component. While the rendering results exhibit comparable
visual quality, radiance transfer demonstrates better performance
in low-frequency component fitting, prevents artifact generation,
and maintains geometric smoothness.

3.4 Illumination Modeling and Decomposition

We primarily use differentiable physically-based deferred rendering
to decompose appearance into material and lighting components.
To prevent aliasing artifacts in shadows, lighting, and albedo, we
leverage the recovered geometric structure to bake occlusion in-
formation into a voxel grid, following the approach in GS-IR [31].
Specifically, we set the background color to white and assign black
to the Gaussian regions. The scene is then projected to generate a
cubemap texture, which is converted into spherical harmonics co-
efficients and stored in the voxel grid. In the following, we describe
our material and illumination modeling in detail.

For materials, we assign BRDF attributes to each Gaussian, in-
cluding albedo ¢, metallic m, and roughness r. For illumination, we
use an environmental cubemap to implement image-based lighting
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Figure 4: Radiance transfer provides a better representation
of low-frequency appearances and helps prevent artifacts
caused by overfitting high-frequency details.Such artifacts
can degrade the smoothness of depth and normal estima-
tions, reducing the quality of the reconstructed geometry,
and adversely affect subsequent decomposition processes.

(IBL) for handling direct lighting. Additionally, we add a parame-
ter L;,q € [0,1]° for each Gaussian to represent diffuse indirect
lighting. The rendering equation L(0) = fQ Li(i)f(i,0)(i- n)diis
separated into diffuse and specular components to simplify compu-
tation. The diffuse component L, is computed as follows:

Ly(x) % /Q Li(x i) (n - i)di

c

—I /Q L9 (x, i) (n - i)di + /Q L (x, i) (n,i)di]  (7)

X

Z[VEOLE™ (0 + (1= VE)LT (0)]
where Lgir (x) represents the direct environmental illumination,
which depends only on the normal direction n. This value is pre-
computed for efficiency and stored in a 2D texture. The indirect
illumination L{iind (x) is derived through the splatting and blending
of L;q. The visibility term V(x) is determined by applying trilinear
interpolation to the precomputed spherical harmonics stored in the
baked voxel grid.

For the specular Lg, we employ the split-sum approximation [24],
treating it as the product of two independent integrals as follows:

Ls(x,o)x‘/Qfs(i,o)(n~i)di/QL,—(x,i)D(i,o)(n-i)di (8)

where f(i, 0) represents the microfacet BRDF [9]. The first term
of the integral represents the BRDF, which is independent of the
lighting. It is precomputed and stored in a Look-Up Table (LUT).
The second term accounts for the incoming radiance modulated by
the normal distribution function (NDF) D, which is pre-integrated
and represented using a filtered cubemap. Finally, the outgoing
radiance is expressed as:

Lo(x,0) = Lg(x) + Ls(x, 0) ©)

After completing deferred rendering, we obtain the final PBR result
IP br-

In the decomposition process, we use both the previously men-

tioned hybrid rendering and PBR branches simultaneously, rather

than freezing the geometric parameters or enabling only the PBR
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branch. This approach is adopted for two main reasons. Firstly,
different rendering models still require corresponding geometric
adjustments for proper adaptation, so completely freezing the geo-
metric parameters is undesirable. We need to locally optimize the
geometric attributes of the Gaussian to accommodate the newly
introduced PBR branch. Secondly, since the PBR-related parameters
are initialized randomly, using only PBR can easily lead to drastic
changes in the geometric structure, which may render the baked
visibility inapplicable. These two points will be further elaborated
in the experimental section.

3.5 Optimization

Throughout the training process, we optimize the geometric at-
tributes of the Gaussian, as well as various rendering attributes
closely related to the two rendering branches, as illustrated by the
3D Gaussians in Figure 2. In addition, we need to optimize the small
MLP G, which is a 3-layer network with 64 hidden units, used to
decode the transfer feature and reflection direction, as well as two
6 X 128 % 128 cubemaps: the reflection map for hybrid rendering
and the environment map for PBR. We first activate the hybrid ren-
dering branch and optimize the corresponding parameters. After
restoring the basic geometric structure, we then activate the PBR
branch and optimize all parameters. Finally, we outline the primary
loss function and the specialized regularization terms.

Rendering losses. As in 3DGS[25], we calculate the hybrid ren-
dering loss Lyr and PBR loss Lppgg using the following equation:

L=0-VLi1(L1g) +ALp_ssim (U, Igr) (10)
Light regularization. We apply a light regularization assuming
a natural white incident light [32, 38] for optimizing environment
map used in PBR as follows:

1
Liight = ) (Le = 5 ) Le)c € {RG,B) (11)

Metal reflection prior. Due to the reflective properties of metals,
we aim to make the metallic parameter m in the PBR model as close
as possible to the reflection intensity R; in hybrid rendering, as
follows:

L = L1(m,R;) (12)
which encourages our two rendering branches to maintain appear-
ance consistency in high-frequency regions. The effectiveness of
this regularization term is discussed in the following section. In
addition, we incorporate a bilateral smoothness term £ and an
object mask constraint £L,. The final loss £ is defined as:

L = LHr+2ApBrLPBR+ A0 Liight + M Lm + A2 Ln+ Ls+ Lo (13)

where Apgr = 0 or 1, g = 0.003, A; = 0.1, A2 = 0.02. Detailed
descriptions of L and £, are provided in the supplementary ma-
terials.

4 EXPERIMENTS

4.1 Evaluation Setup

Dataset and Metrics. For synthetic objects in the TensoIR [23] and
Shiny Blender [46] datasets, as well as real objects in the Stanford
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Table 1: NVS quality, training time and FPS on TensolIR, Shiny Blender and Stanford ORB datasets. “HR” represents our hybrid

rendering branch.

Methods TensolR Shiny Blender Stanford ORB Training Time | FPS
PSNRT SSIM{ LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIM{ LPIPS)
NeRO 32.60 0.933 0.082 30.96 0.953 0.081 29.25 0.970 0.060 8h <1
TensolR 35.18 0.976 0.040 27.95 0.896 0.159 34.81 0.983 0.029 5h 4
GS-IR 34.80 0.960 0.047 26.98 0.874 0.152 32.95 0.928 0.054 0.4h 189
R3DG 37.15 0.981 0.024 27.30 0.922 0.121 38.54 0.988 0.016 1h 16
3DGS-DR | 3815 0979  0.031 | 3203 0960 0.084 | 39.80 0987 0.015 0.4h 271
GShader | 37.13  0.982  0.023 | 30.87 0953  0.088 | 3602 0989  0.017 1h 65
Ours 39.17 0.985 0.021 33.99 0971 0.061 39.81 0.990 0.016 0.5h 133
Ours(HR) | 41.39 0.988 0.017 35.24 0.975 0.055 40.49 0.991 0.014 0.5h 96

Table 2: Relighting quality is evaluated on the TensolR, Shiny Blender, and Stanford ORB datasets.

Methods TensolR Shiny Blender Stanford ORB
PSNRT SSIMT LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIMT LPIPS|
TensolR | 28.55 0.945 0.080 22.30 0.842 0.184 26.22 0.947 0.049
GShader | 26.86 0.930 0.063 19.20 0.874 0.131 26.23 0.952 0.043
GS-IR 25.98 0.897 0.092 21.18 0.846 0.160 28.44 0.960 0.038
R3DG 28.52 0.931 0.069 20.69 0.869 0.141 27.88 0.957 0.039
Ours 30.10 0.944 0.053 26.16 0.928 0.084 28.93 0.967 0.029

Ours GS-IR

3DGS-DR GShader TensoIR

Figure 5: Qualitative comparisons on a synthetic dataset. Our method retains more details, particularly in specular regions.

ORB dataset [27], we evaluate the performance of novel view syn-
thesis and relighting using PSNR, SSIM [48], and LPIPS [63] metrics.
For the ball object in the Shiny Blender dataset, only qualitative
results are provided due to the absence of relighting ground truth
(GT). In addition, we use mean angular error (MAE) to evaluate the
quality of normal estimation. In addition, we have also provided the
results of training duration and inference speed (FPS). We further
evaluate novel view synthesis on the Ref-Real [46] and MipNeRF-
360 [3] datasets. Numbers in bold represent the best performance,
while underscored numbers indicate the second-best performance.

Methods for Comparison. We compared the quality of novel
view synthesis against several NeRF-based methods [23, 32] and
3DGS-based methods [16, 22, 31, 55]. In addition, we evaluated the

relighting quality between different inverse rendering methods.
All methods were implemented and trained using their publicly
available code and default configurations.

4.2 Comparison with previous works

Novel view synthesis. Table 1 presents the quantitative compari-
son results for novel view synthesis (NVS) on object-level datasets.
Our PBR results show clear advantages over other methods. Ad-
ditionally, we provide our Hybrid Rendering (HR) branch results
to demonstrate the effectiveness of the hybrid rendering model.
Visual comparisons are provided in Figure 5. Notably, our method
preserves stable geometric structures even with high-frequency sur-
face variations, producing clearer and more accurate novel views.
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GShader TensolR

GShader

TensoIR

Figure 7: Qualitative comparisons of normal produced by different methods. Our method provides robust normal estimation.

Furthermore, Table 3 presents our results on the Ref-Real dataset
[46] and the Mip-NeRF 360 dataset [3], where our method achieves
competitive quantitative results.

Relighting. Table 2 presents the results of the relighting compar-
ison. For the TensolR and Shiny Blender datasets, albedo is aligned
to the ground truth via channel-wise scaling before relighting as
described in [27, 62]. For the Stanford ORB dataset, albedo scaling
is disabled to more accurately evaluate absolute decomposition
performance on real objects. Results for the TensoIR and Shiny
Blender datasets are averaged over all viewpoints under five differ-
ent environment maps. For the Stanford ORB dataset, relighting
is evaluated using the provided 20 image-environment map pairs.
Visual comparisons are provided in Figure 6. Our method’s supe-
rior detail preservation and effectively suppresses aliasing artifacts
in both albedo and lighting, leading to more realistic and visually
consistent relighting results. Notably, our approach maintains cred-
ibility under different relighting conditions, without significant
surface artifacts appearing on either rough or smooth objects.

Normal and materials estimation. Table 4 and Figure 7 present
the results of our normal estimation. Notably, in the presence of
high-frequency surface details, our method effectively prevents
surface discontinuities caused by floating artifacts. In Figure 9, we
visualize the estimated albedo, metallic, roughness, normal, and

environmental lighting components. Our framework successfully
decomposes both diffuse and specular objects. For specular ob-
jects, we achieve high-quality decomposition results with clearer
environmental lighting. Additional albedo estimation results and
more qualitative comparisons are provided in the supplementary
materials.

Table 3: Novel view synthesis quality evaluated using PSNR,
SSIM, and LPIPS on the Ref-Real dataset and the Mip-NeRF
360 dataset.

Methods Ref-Real Mip-NeRF 360
PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS|
GS-IR | 2341 0606 0.297 | 2618 0801  0.200
GShader 21.13 0.578 0.375 22.33 0.577 0.329
3DGS-DR | 23.51  0.638 0.343 25.14 0.783 0.304
Ours 23.54 0.627 0.337 26.65 0.806 0.233

4.3 Ablation Study

We specifically evaluated the effectiveness of radiance transfer com-
pared to spherical harmonics. Additionally, we performed ablation
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Table 4: Normal estimation quality with Gaussian-based
methods evaluated using MAE| on the TensoIR dataset and
the Shiny Blender dataset.

GS-IR R3DG 3DGS-DR GShader Ours
TensolR 5.313 5.914 5.728 5.303 5.347
Shiny Blender | 9.328  9.238 3.632 4.800 3.091

Table 5: Ablation study of key components on the Shiny
Blender dataset. "w/o radiance transfer" represents using
SHs to calculate the radiance part in hybrid rendering. "Prop-
agation" denotes simplified normal propagation. "Frozen ge-
ometry" indicates freezing geometry attributes during de-
composition. "w/o hybrid rendering" refers to disabling the
hybrid rendering branch during decomposition.

Ablations NVS PSNRT | Relighting PSNRT
ours 33.99 26.16
w/o radiance transfer 32.15 25.85
w/o propagation 33.26 26.09
w/o Lm 33.76 25.88
w/ frozen geometry 31.49 24.66
w/o hybrid rendering 32.90 25.18

Rendering Visibility =~ Normal  Radiance Relighting

w/ Radiance Transfer

Figure 8: Radiance transfer can more effectively separate low-
frequency components of appearance, thereby preventing
artifacts caused by overfitting. These artifacts compromise
geometric smoothness and degrade the quality of rendering
and relighting,.

studies on simplified normal propagation to validate the contri-
bution of our proposed components. We also evaluate the impact
of the metal reflection prior introduced in Sec. 3.5. For decompo-
sition process, we further conducted experiments of using fixed
geometric parameters and disabling the hybrid rendering branch
(i.e., using only the PBR branch) during appearance decomposi-
tion, to demonstrate the advantages of our dual-branch rendering
framework.

Analysis on radiance transfer. As illustrated in Figure 8, using
radiance transfer instead of spherical harmonics to represent the
radiance component in hybrid rendering reduces floating artifacts

Anon. Submission Id: 2556

Rendering  Albedo

Metallic Roughness Normal Environment Lighting

Figure 9: Normal, albedo, roughness, metallic and environ-
ment lighing results on synthetic dataset.

and prevents normal and visibility errors caused by local geometric
inaccuracies, particularly for specular objects. These improvements
significantly enhance the quality of relighting. As shown in Table 5,
radiance transfer also leads to notable improvements in quantitative
results.

Analysis on decomposition process. When decomposing the
appearance, we simultaneously enable hybrid rendering and PBR
to fine-tune the geometry, making it compatible with both ren-
dering models. We also evaluate the effects of freezing geometric
parameters or enabling only the PBR branch, which demonstrates
the limitations of single-branch approaches. As shown in Table 5,
both frozen geometry and enabling the PBR branch only lead to
significant quality degradation. The former occurs because the geo-
metric structure required for hybrid rendering does not fully meet
PBR’s requirements, while the latter leads to geometric mutations,
rendering the baked occlusion ineffective.

Limitation We assume that lighting originates from an infinite
distance, which differs from actual lighting conditions in large-scale
scenes. Additionally, our method does not consider more complex
indirect lighting effects, such as inter-reflections. These limitations
are shown in Figure 10.

GT Ours

Figure 10: Limitation of our method.

5 CONCLUSIONS

We introduce RTR-GS, an inverse rendering framework that enables
realistic novel view synthesis and relighting through Gaussian splat-
ting and deferred rendering. By separating high-frequency and low-
frequency appearances using reflection maps and radiance transfer,
we achieve high-quality hybrid rendering and normal estimation.
Building on this, we further decompose material and lighting from
the appearance by an additional PBR branch. Experimental results
demonstrate that our method delivers competitive performance in
novel view synthesis and relighting across various objects. In the
future, we aim to explore more precise rendering techniques and
incorporate more complex secondary lighting effects.
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