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RTR-GS: 3D Gaussian Splatting for Inverse Rendering with
Radiance Transfer and Reflection
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Figure 1: We propose RTR-GS, a framework for geometry-light-material decomposition from multi-view images. Our method
significantly enhances normal estimation and visual realism for reflective surfaces compared to GS-IR [31] and GShader
[22]. Additionally, we achieve material and lighting decomposition while accounting for secondary lighting effects through
physically-based deferred rendering. The material components include albedo, metallic, and roughness. This high-quality
decomposition enables realistic relighting and material editing.

ABSTRACT
3D Gaussian Splatting (3DGS) has demonstrated impressive capabil-
ities in novel view synthesis. However, rendering reflective objects
remains a significant challenge, particularly in inverse rendering
and relighting. We introduce RTR-GS, a novel inverse rendering
framework capable of robustly rendering objects with arbitrary
reflectance properties, decomposing BRDF and lighting, and deliv-
ering credible relighting results. Given a collection of multi-view im-
ages, our method effectively recovers geometric structure through
a hybrid rendering model that combines forward rendering for radi-
ance transfer with deferred rendering for reflections. This approach
successfully separates high-frequency and low-frequency appear-
ances, mitigating floating artifacts caused by spherical harmonic
overfitting when handling high-frequency details. We further refine
BRDF and lighting decomposition using an additional physically-
based deferred rendering branch. Experimental results show that
our method enhances novel view synthesis, normal estimation, de-
composition, and relighting while maintaining efficient training
inference process.

CCS CONCEPTS
• Computing methodologies→ Rasterization; • Point-based
models; • Machine learning approaches; • Rendering;

KEYWORDS
Novel view synthesis, Gaussian Splatting, Relighting

1 INTRODUCTION
Inverse rendering is a long-standing challenge that seeks to de-
compose a 3D scene’s physical attributes—geometry, materials,
and lighting—from captured images. This decomposition enables
downstream tasks such as relighting and editing. The problem is
particularly challenging due to the complex interplay of these at-
tributes during rendering, especially under unknown illumination
conditions, which make it inherently under-constrained. Neural
Radiance Fields (NeRF) [36] have achieved remarkable success in
novel view synthesis, laying the groundwork for inverse rendering.
Methods such as [7, 32, 62, 64] use implicit neural representations,
like Multi-Layer Perceptrons (MLPs), to decompose physical com-
ponents. However, MLPs suffer from limited expressiveness and
high computational costs, making it challenging to balance qual-
ity and efficiency. 3D Gaussian Splatting (3DGS) [25] improves
both the speed and quality of learning-based volumetric rendering,
and several methods [16, 31, 43] have integrated physically-based
rendering into this framework. However, spherical harmonic func-
tions lack the directional resolution needed to accurately represent
specular reflections, and overfitting during Gaussian splatting and
cloning can introduce floating artifacts.

Accurate geometry is crucial for decomposing materials and
lighting from complex appearances. However, high-frequency de-
tails can cause overfitting, leading to floating artifacts that deviate
from physically smooth surfaces and compromise geometric ac-
curacy. To address this issue, we propose using a reflection map
to store specular components, isolating high-frequency appear-
ance details from the radiance component to mitigate overfitting.
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Additionally, we replace independent spherical harmonics with
radiance transfer rendering, which imposes stronger global low-
frequency constraints when computing radiance components. By
separating high-frequency and low-frequency appearances, our
method enables accurate recovery of geometric structures with ar-
bitrary reflectance properties. Following geometry reconstruction,
we model occlusion and indirect illumination by baking visibility
into 3D voxels and introducing indirect lighting parameters. This
approach reduces aliasing artifacts in albedo, shadows, and lighting
during decomposition. Finally, we achieve effective material and
lighting decomposition by integrating an additional differentiable,
physically-based deferred rendering branch.

The primary contribution of our work is the introduction of
a Gaussian splatting-based inverse rendering framework, RTR-
GS, which accurately estimates surface normals, bidirectional re-
flectance distribution functions (BRDF), and environmental lighting
from multi-view images of both diffuse and specular objects. Specif-
ically, it includes the following key aspects:

• We propose a 3DGS-based hybrid rendering model that
integrates reflection maps with radiance transfer, effec-
tively separating high-frequency and low-frequency ap-
pearances. This enables efficient rendering of objects with
arbitrary reflectance properties while reducing floating arti-
facts, thereby improving geometric structure recovery with
high-quality normals.

• We further enhance appearance decomposition through
a dual-branch rendering approach, enabling efficient and
accurate material and lighting decomposition via rational
lighting modeling and occlusion data baked into 3D voxels.

• Comprehensive experiments demonstrate that our method
achieves state-of-the-art performance in novel view syn-
thesis and relighting, producing credible results for both
diffuse and specular objects.

2 RELATEDWORK
2.1 Neural representations
Recent advancements in Neural Radiance Fields (NeRF) [36] have
garnered significant attention. Subsequent research has focused on
enhancing rendering quality [2, 4, 26], improving surface recon-
struction [29, 47, 54], and advancing object generation [11, 40, 49,
59], among other areas. Additionally, some methods aim to balance
speed and quality [10, 12, 15, 20, 37, 45], facilitating more efficient
evaluations.

3D Gaussian Splatting [25] effectively combines radiance field
rendering with rasterization by leveraging discrete Gaussian dis-
tributions and the splatting technique. Subsequent research has
focused on enhancing rendering quality [33, 57], more accurate
geometry reconstruction [21, 35, 58], expanding editability [34, 60],
and increasing scalability [39]. However, these methods do not
decompose appearance into materials and lighting, limiting their
suitability for relighting and editing tasks.

2.2 Inverse rendering
Inverse rendering aims to decompose physically-based attributes
from observations, including geometry, material, and lighting. A
variety of methods simplify this problem by assuming controllable

lighting conditions [1, 5, 6, 17, 41]. Some works relax these as-
sumptions to consider direct lighting effects [7, 8, 62]. These works
[13, 51, 53, 61, 64, 65] model secondary lighting effects using ad-
ditional MLPs. To reduce computational overhead, some methods
[23, 28] employ tensor decomposition techniques inspired by Ten-
soRF [12]. For compatibility with existing rendering pipelines, NvD-
iffrec [38] and NvDiffrecMC [19] utilize differentiable rendering
with rasterization or ray-tracing pipelines.

Methods based on 3D Gaussian Splatting (3DGS) have signifi-
cantly accelerated training and rendering. GS-IR [31], GIR [43], and
R3DG [16] constrain surface normals using pseudo normals derived
from depth and model shadows and indirect lighting through bak-
ing or ray-tracing. By leveraging pre-computed radiance transfer,
PRT-GS [18] enables relighting, including secondary lighting effects.
Phys3DGS [14] integrates 3D Gaussian splats with mesh-based rep-
resentations. Although these methods retain the high efficiency of
3DGS, using spherical harmonic functions as a radiance represen-
tation for geometry recovery often introduces floating artifacts on
reflective surfaces, leading to geometric inaccuracies.

2.3 Reflective object reconstruction
Reconstructing reflective objects poses a significant challenge in
inverse rendering tasks due to the high-frequency appearance
changes that result in view inconsistencies. Ref-NeRF [46] tries
to address this by using reflection directions instead of view di-
rections and introducing Integrating Direction Encoding (IDE) to
model reflections effectively. NeRO [32] explicitly models the re-
flection process. Spec-Gaussian [52] simulates reflections using
anisotropic Gaussians. Deferred rendering approaches, such as De-
ferredGS [50], 3DGS-DR [55], GS-ROR [66], and GUS-IR[30] replace
forward rendering to better handle reflections. GaussianShader [22]
separates specular components and incorporates residual terms to
capture secondary lighting effects. Additionally, PRD-GS [56] in-
troduces progressive radiance distillation.

Inspired by these works, we adopt 3D Gaussians as the scene
representation and develop an inverse rendering framework capable
of effectively rendering object with arbitrary reflectance properties
while also decomposing material and lighting components.

3 METHOD
3.1 Overview
Figure 2 illustrates the overall framework of the proposed RTR-GS.
We initialize 3D Gaussians using sparse point clouds generated
randomly or estimated by COLMAP [42]. To model reflections, it is
essential to define the normals for the Gaussians. We define normals
as the shortest axis of each Gaussian, oriented toward the viewing
direction, and optimize them synergistically using deferred render-
ing of reflections and pseudo-normals derived from a depth map
(Sec. 3.2). Subsequently, we refine the Gaussians by introducing
additional parameters and integrating key components into a hy-
brid rendering model (Sec. 3.3). This model combines radiance from
forward rendering with reflections from deferred rendering, effec-
tively separating high-frequency and low-frequency appearances to
better represent complex materials and achieve high-quality scene
reconstruction. Next, we decompose the appearance using differen-
tiable physically-based deferred rendering, incorporating occlusion

2
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Figure 2: RTR-GS Rendering Pipeline. Our rendering pipeline consists of a hybrid rendering branch and a physically-based
rendering branch. The hybrid rendering branch computes the radiance color for each Gaussian using forward rendering through
radiance transfer, which is then blended with the reflections from deferred rendering after splatting. The physically-based
rendering branch is fully implemented during the deferred rendering phase. Initially, the hybrid rendering branch reconstructs
the fundamental geometric structure and stores visibility in voxel grids. The physically-based rendering branch is then activated
to further decompose material appearances.

baking, indirect lighting modeling, and additional BRDF parameters.
During this process, we employ two rendering branches simulta-
neously to refine the geometry (Sec. 3.4). Finally, we enhance the
results through rendering losses and additional regularization terms
(Sec. 3.5).

3.2 Deferred Rendering and Normal Modeling
In the 3DGS framework, the attributes of multiple Gaussians are
blended in the image plane using splatting and alpha blending, as
follows:

𝐼𝑓 =

𝑁∑︁
𝑖=0

𝑓𝑖𝛼𝑖𝑇𝑖 (1)

where 𝛼𝑖 is the opacity, 𝑇𝑖 =
∏𝑖−1

𝑗=1 (1 − 𝛼 𝑗 ) represents the accumu-
lated transmittance, 𝑓𝑖 denotes the parameters of the 𝑖-th Gauss-
ian, and 𝐼𝑓 represents the splatted screen-space attribute buffer. In
vanilla 3DGS [25], outgoing radiance is computed per-Gaussian
before blending. This process is referred to as forward rendering.
Additionally, the attributes associated with each Gaussian can be
transformed into screen space for subsequent shading, a process
known as deferred rendering. The following section explains our
normal design and optimization based on the deferred rendering
implementation.

Accurate normals are essential for modeling reflection.We define
the normal direction as the shortest axis of the Gaussian. During
the optimization process, the Gaussian shape typically flattens as
it aligns with the surface, causing the shortest axis to correspond
to a larger area. Similar to GS-IR [31] and R3DG [16], we optimize
normals by enforcing consistency between the pseudo-normal map

n̂d, derived from the depth map, and the Gaussian normals map n,
as follows:

L𝑛 = ∥n − n̂d∥2 (2)

This constraint is effective in optimizing normals when the depth
map is smooth enough. Additionally, normals are used to compute
reflection directions and contribute to deferred rendering. This pro-
cess enables rendering losses to be backpropagated to the normals,
refining the Gaussian shape. When specular reflection is dominant,
rendering losses from reflections primarily drive normal optimiza-
tion. Conversely, in diffuse regions, depth-derived pseudo-normals
impose a stronger constraint. Figure 3 illustrates the normal op-
timization process. Inspired by 3DGS-DR [55], we also introduce
a simplified normal propagation mechanism that periodically en-
hances Gaussian opacity, improving the model’s robustness against
extreme specular reflections.

3.3 Hybrid Rendering and Radiance Transfer
To effectively render appearances with diverse variations and to
mitigate Gaussian floating artifacts caused by limited representa-
tion capability, we propose a hybrid rendering approach to replace
the spherical harmonics-based forward rendering in 3DGS [25]. Our
hybrid rendering model separates radiance and reflection to cap-
ture low-frequency and high-frequency components, respectively.
Specifically, the radiance is computed using forward rendering,
while the reflection is obtained through deferred rendering. The
two components are then adaptively blended based on the reflection
intensity as follows:
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Figure 3: By adjusting the shapes of the Gaussians using the
pseudo normals and gradients from the reflection map, the
normals are optimized.

𝐼𝑟𝑔𝑏 = 𝐶𝑟 · (1.0 − 𝑅𝑖 ) +𝐶𝑟𝑒 𝑓 · 𝑅𝑖 (3)
where 𝐶𝑟 is the radiance color, 𝐶𝑟𝑒 𝑓 is the reflection color, and
𝑅𝑖 is the reflection intensity. The final blending is done in screen
space. Further details on the reflection and radiance components
are provided in the following sections.
Reflection. In forward rendering, BRDF lobes are computed indi-
vidually using the respective normal of each Gaussian and are then
blended after shading. However, this blending process broadens
the final BRDF lobe, resulting in blurry rendering effects. In con-
trast, deferred rendering generates a single BRDF lobe based on the
blended normal, providing higher precision and better preservation
of BRDF sharpness. Similar observations have been analyzed in
GUS-IR [30] and GS-ROR [66].

For each Gaussian, we introduce additional reflection attributes
for deferred rendering: reflection tint 𝑅𝑡 and reflection roughness
𝑅𝑟 . We adopt a microfacet BRDF to simulate surfaces with varying
roughness levels and achieve efficient computation using the split-
sum approximation [24]. The final reflection color is computed
as:

𝐶𝑟𝑒 𝑓 = 𝑅𝑡 · 𝐹𝑟𝑒 𝑓 (𝐸𝑟 , 𝑅𝑟 , n, v) (4)
where 𝐸𝑟 is a learnable reflection map, n and v denote the normal
and the view direction, respectively. 𝐹𝑟𝑒 𝑓 represents the split-sum
approximation [24], which will be explained in more detail in Sec-
tion 3.4.
Radiance. Inspired by Precomputed Radiance Transfer (PRT) [44],
we adopt radiance transfer instead of spherical harmonics to com-
pute outgoing radiance. Firstly, we will describe how radiance trans-
fer is used to shade each Gaussian, including both view-independent
and view-dependent components. Then we will explain the moti-
vation behind using radiance transfer.

The view-independent component is consistent with the radi-
ance transfer rendering in PRT. This calculation approximates the
diffuse part of rendering equation as a dot product of two vectors
as follows:

𝐶𝑑 ≈ 𝝆𝒅

𝑛2∑︁
𝑗=0

𝑐 𝑗𝑐
𝑡
𝑗 (5)

where 𝝆𝒅 represents the diffuse base color, 𝑐 𝑗 denotes the coeffi-
cients of the spherical harmonics lighting, and 𝑐𝑡

𝑗
represents the

transfer vector. Notably, all Gaussians share the same spherical
harmonics lighting 𝑐 𝑗 but use individual transfer vector 𝑐𝑡𝑗 .

For the view-dependent component, following the derivation in
PRT [44], we need to compute a radiance transfer matrix to convert
environmental lighting into transferred lighting. However, 𝑛-order
spherical harmonics lighting requires 𝑛2 parameters to store the
transfer matrix, leading to rapidly increasing storage costs as the
number of Gaussians grows. To address this issue, we adopt neural
radiance transfer for the view-dependent component and compute
it in a manner similar to the view-independent case. Specifically, for
each Gaussian, we introduce a set of randomly initialized radiance
transfer features 𝑓𝑡 and a specular base color 𝝆𝒔 . We decode 𝑓𝑡 and
the reflection direction o using a lightweight MLP 𝐺 to obtain the
neural radiance transfer vector 𝑐𝑡

𝑗
(o). The view-dependent outgoing

radiance is computed as:

𝐶𝑠 (o) ≈ 𝝆𝒔

𝑛2∑︁
𝑗=0

𝑐 𝑗𝑐
𝑡
𝑗 (o), 𝑤𝑖𝑡ℎ 𝑐𝑡𝑗 (o) = 𝐺 (𝑓𝑡 , o) (6)

The total outgoing radiance is given by𝐶𝑟 = 𝐶𝑑+𝐶𝑠 (o). After Gauss-
ian splatting and blending, this radiance further participates in the
blending process during deferred rendering. A detailed derivation
of our radiance transfer implementation is provided in the supple-
mentary materials.

Compared to spherical harmonics, radiance transfer allows us
to maintain enougth representational capacity while providing
stronger global low-frequency constraints. In the shading process,
all Gaussians share two global components: the spherical harmon-
ics lighting 𝑐 𝑗 and the MLP𝐺 . This design enables shading across
Gaussians to be connected through shared components, promoting
the representation of overall low-frequency variations. Meanwhile,
each Gaussian has its own independent transfer vector and transfer
features, along with base color attributes. This enables our radiance
transfer representation to better handle components that are diffi-
cult to recover in the reflection part, such as local reflections and
shadows. Figure 4 illustrates the differences between our radiance
transfer representation and spherical harmonics in modeling the ra-
diance component. While the rendering results exhibit comparable
visual quality, radiance transfer demonstrates better performance
in low-frequency component fitting, prevents artifact generation,
and maintains geometric smoothness.

3.4 Illumination Modeling and Decomposition
We primarily use differentiable physically-based deferred rendering
to decompose appearance into material and lighting components.
To prevent aliasing artifacts in shadows, lighting, and albedo, we
leverage the recovered geometric structure to bake occlusion in-
formation into a voxel grid, following the approach in GS-IR [31].
Specifically, we set the background color to white and assign black
to the Gaussian regions. The scene is then projected to generate a
cubemap texture, which is converted into spherical harmonics co-
efficients and stored in the voxel grid. In the following, we describe
our material and illumination modeling in detail.

For materials, we assign BRDF attributes to each Gaussian, in-
cluding albedo c, metallic𝑚, and roughness 𝑟 . For illumination, we
use an environmental cubemap to implement image-based lighting

4
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Figure 4: Radiance transfer provides a better representation
of low-frequency appearances and helps prevent artifacts
caused by overfitting high-frequency details.Such artifacts
can degrade the smoothness of depth and normal estima-
tions, reducing the quality of the reconstructed geometry,
and adversely affect subsequent decomposition processes.

(IBL) for handling direct lighting. Additionally, we add a parame-
ter 𝐿𝑖𝑛𝑑 ∈ [0, 1]3 for each Gaussian to represent diffuse indirect
lighting. The rendering equation 𝐿(o) =

∫
Ω 𝐿𝑖 (i) 𝑓 (i, o) (i · n)𝑑i is

separated into diffuse and specular components to simplify compu-
tation. The diffuse component 𝐿𝑑 is computed as follows:

𝐿𝑑 (x) =
𝒄

𝜋

∫
Ω
𝐿𝑖 (x, i) (n · i)𝑑i

=
𝒄

𝜋
[
∫
Ω
𝐿𝑑𝑖𝑟𝑖 (x, i) (n · i)𝑑i +

∫
Ω
𝐿𝑖𝑛𝑑𝑖 (x, i) (n, i)𝑑i]

≈ 𝒄

𝜋
[𝑉 (x)𝐿𝑑𝑖𝑟

𝑑
(x) + (1 −𝑉 (x))𝐿𝑖𝑛𝑑

𝑑
(x))]

(7)

where 𝐿𝑑𝑖𝑟
𝑑

(x) represents the direct environmental illumination,
which depends only on the normal direction n. This value is pre-
computed for efficiency and stored in a 2D texture. The indirect
illumination 𝐿𝑖𝑛𝑑

𝑑
(x) is derived through the splatting and blending

of 𝐿𝑖𝑛𝑑 . The visibility term𝑉 (x) is determined by applying trilinear
interpolation to the precomputed spherical harmonics stored in the
baked voxel grid.

For the specular 𝐿𝑠 , we employ the split-sum approximation [24],
treating it as the product of two independent integrals as follows:

𝐿𝑠 (x, o) ≈
∫
Ω
𝑓𝑠 (i, o) (n · i)𝑑i

∫
Ω
𝐿𝑖 (x, i)𝐷 (i, o) (n · i)𝑑i (8)

where 𝑓 (i, o) represents the microfacet BRDF [9]. The first term
of the integral represents the BRDF, which is independent of the
lighting. It is precomputed and stored in a Look-Up Table (LUT).
The second term accounts for the incoming radiance modulated by
the normal distribution function (NDF) 𝐷 , which is pre-integrated
and represented using a filtered cubemap. Finally, the outgoing
radiance is expressed as:

𝐿𝑜 (x, o) = 𝐿𝑑 (x) + 𝐿𝑠 (x, o) (9)
After completing deferred rendering, we obtain the final PBR result
𝐼𝑝𝑏𝑟 .

In the decomposition process, we use both the previously men-
tioned hybrid rendering and PBR branches simultaneously, rather
than freezing the geometric parameters or enabling only the PBR

branch. This approach is adopted for two main reasons. Firstly,
different rendering models still require corresponding geometric
adjustments for proper adaptation, so completely freezing the geo-
metric parameters is undesirable. We need to locally optimize the
geometric attributes of the Gaussian to accommodate the newly
introduced PBR branch. Secondly, since the PBR-related parameters
are initialized randomly, using only PBR can easily lead to drastic
changes in the geometric structure, which may render the baked
visibility inapplicable. These two points will be further elaborated
in the experimental section.

3.5 Optimization
Throughout the training process, we optimize the geometric at-
tributes of the Gaussian, as well as various rendering attributes
closely related to the two rendering branches, as illustrated by the
3D Gaussians in Figure 2. In addition, we need to optimize the small
MLP 𝐺 , which is a 3-layer network with 64 hidden units, used to
decode the transfer feature and reflection direction, as well as two
6 × 128 × 128 cubemaps: the reflection map for hybrid rendering
and the environment map for PBR. We first activate the hybrid ren-
dering branch and optimize the corresponding parameters. After
restoring the basic geometric structure, we then activate the PBR
branch and optimize all parameters. Finally, we outline the primary
loss function and the specialized regularization terms.
Rendering losses. As in 3DGS[25], we calculate the hybrid ren-
dering loss L𝐻𝑅 and PBR loss L𝑃𝐵𝑅 using the following equation:

L = (1 − 𝜆)L1 (𝐼 , 𝐼𝑔𝑡 ) + 𝜆L𝐷−𝑆𝑆𝐼𝑀 (𝐼 , 𝐼𝑔𝑡 ) (10)
Light regularization.We apply a light regularization assuming
a natural white incident light [32, 38] for optimizing environment
map used in PBR as follows:

L𝑙𝑖𝑔ℎ𝑡 =
∑︁
𝑐

(𝐿𝑐 −
1
3

∑︁
𝑐

𝐿𝑐 ), 𝑐 ∈ {𝑅,𝐺, 𝐵} (11)

Metal reflection prior. Due to the reflective properties of metals,
we aim to make the metallic parameter𝑚 in the PBR model as close
as possible to the reflection intensity 𝑅𝑖 in hybrid rendering, as
follows:

L𝑚 = L1 (𝑚,𝑅𝑖 ) (12)
which encourages our two rendering branches to maintain appear-
ance consistency in high-frequency regions. The effectiveness of
this regularization term is discussed in the following section. In
addition, we incorporate a bilateral smoothness term L𝑠 and an
object mask constraint L𝑜 . The final loss L is defined as:

L = L𝐻𝑅 +𝜆𝑃𝐵𝑅L𝑃𝐵𝑅 +𝜆0L𝑙𝑖𝑔ℎ𝑡 +𝜆1L𝑚 +𝜆2L𝑛 +L𝑠 +L𝑜 (13)

where 𝜆𝑃𝐵𝑅 = 0 or 1, 𝜆0 = 0.003, 𝜆1 = 0.1, 𝜆2 = 0.02. Detailed
descriptions of L𝑠 and L𝑜 are provided in the supplementary ma-
terials.

4 EXPERIMENTS
4.1 Evaluation Setup
Dataset andMetrics. For synthetic objects in the TensoIR [23] and
Shiny Blender [46] datasets, as well as real objects in the Stanford
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Table 1: NVS quality, training time and FPS on TensoIR, Shiny Blender and Stanford ORB datasets. “HR” represents our hybrid
rendering branch.

Methods TensoIR Shiny Blender Stanford ORB Training Time FPSPSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRO 32.60 0.933 0.082 30.96 0.953 0.081 29.25 0.970 0.060 8h <1
TensoIR 35.18 0.976 0.040 27.95 0.896 0.159 34.81 0.983 0.029 5h 4
GS-IR 34.80 0.960 0.047 26.98 0.874 0.152 32.95 0.928 0.054 0.4h 189
R3DG 37.15 0.981 0.024 27.30 0.922 0.121 38.54 0.988 0.016 1h 16

3DGS-DR 38.15 0.979 0.031 32.03 0.960 0.084 39.80 0.987 0.015 0.4h 271
GShader 37.13 0.982 0.023 30.87 0.953 0.088 36.02 0.989 0.017 1h 65
Ours 39.17 0.985 0.021 33.99 0.971 0.061 39.81 0.990 0.016 0.5h 133

Ours(HR) 41.39 0.988 0.017 35.24 0.975 0.055 40.49 0.991 0.014 0.5h 96

Table 2: Relighting quality is evaluated on the TensoIR, Shiny Blender, and Stanford ORB datasets.

Methods TensoIR Shiny Blender Stanford ORB
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

TensoIR 28.55 0.945 0.080 22.30 0.842 0.184 26.22 0.947 0.049
GShader 26.86 0.930 0.063 19.20 0.874 0.131 26.23 0.952 0.043
GS-IR 25.98 0.897 0.092 21.18 0.846 0.160 28.44 0.960 0.038
R3DG 28.52 0.931 0.069 20.69 0.869 0.141 27.88 0.957 0.039
Ours 30.10 0.944 0.053 26.16 0.928 0.084 28.93 0.967 0.029

GT Ours R3DG GS-IR 3DGS-DR GShader TensoIR

Figure 5: Qualitative comparisons on a synthetic dataset. Our method retains more details, particularly in specular regions.

ORB dataset [27], we evaluate the performance of novel view syn-
thesis and relighting using PSNR, SSIM [48], and LPIPS [63] metrics.
For the ball object in the Shiny Blender dataset, only qualitative
results are provided due to the absence of relighting ground truth
(GT). In addition, we use mean angular error (MAE) to evaluate the
quality of normal estimation. In addition, we have also provided the
results of training duration and inference speed (FPS). We further
evaluate novel view synthesis on the Ref-Real [46] and MipNeRF-
360 [3] datasets. Numbers in bold represent the best performance,
while underscored numbers indicate the second-best performance.

Methods for Comparison.We compared the quality of novel
view synthesis against several NeRF-based methods [23, 32] and
3DGS-based methods [16, 22, 31, 55]. In addition, we evaluated the

relighting quality between different inverse rendering methods.
All methods were implemented and trained using their publicly
available code and default configurations.

4.2 Comparison with previous works
Novel view synthesis. Table 1 presents the quantitative compari-
son results for novel view synthesis (NVS) on object-level datasets.
Our PBR results show clear advantages over other methods. Ad-
ditionally, we provide our Hybrid Rendering (HR) branch results
to demonstrate the effectiveness of the hybrid rendering model.
Visual comparisons are provided in Figure 5. Notably, our method
preserves stable geometric structures even with high-frequency sur-
face variations, producing clearer and more accurate novel views.
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GT Ours GS-IRR3DG TensoIRGShader

Figure 6: Qualitative comparisons of relighting with different environment lighting conditions.

GT Ours R3DG GS-IR 3DGS-DR GShader TensoIR

Figure 7: Qualitative comparisons of normal produced by different methods. Our method provides robust normal estimation.

Furthermore, Table 3 presents our results on the Ref-Real dataset
[46] and the Mip-NeRF 360 dataset [3], where our method achieves
competitive quantitative results.

Relighting. Table 2 presents the results of the relighting compar-
ison. For the TensoIR and Shiny Blender datasets, albedo is aligned
to the ground truth via channel-wise scaling before relighting as
described in [27, 62]. For the Stanford ORB dataset, albedo scaling
is disabled to more accurately evaluate absolute decomposition
performance on real objects. Results for the TensoIR and Shiny
Blender datasets are averaged over all viewpoints under five differ-
ent environment maps. For the Stanford ORB dataset, relighting
is evaluated using the provided 20 image-environment map pairs.
Visual comparisons are provided in Figure 6. Our method’s supe-
rior detail preservation and effectively suppresses aliasing artifacts
in both albedo and lighting, leading to more realistic and visually
consistent relighting results. Notably, our approach maintains cred-
ibility under different relighting conditions, without significant
surface artifacts appearing on either rough or smooth objects.

Normal andmaterials estimation.Table 4 and Figure 7 present
the results of our normal estimation. Notably, in the presence of
high-frequency surface details, our method effectively prevents
surface discontinuities caused by floating artifacts. In Figure 9, we
visualize the estimated albedo, metallic, roughness, normal, and

environmental lighting components. Our framework successfully
decomposes both diffuse and specular objects. For specular ob-
jects, we achieve high-quality decomposition results with clearer
environmental lighting. Additional albedo estimation results and
more qualitative comparisons are provided in the supplementary
materials.

Table 3: Novel view synthesis quality evaluated using PSNR,
SSIM, and LPIPS on the Ref-Real dataset and the Mip-NeRF
360 dataset.

Methods Ref-Real Mip-NeRF 360
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GS-IR 23.41 0.606 0.297 26.18 0.801 0.200
GShader 21.13 0.578 0.375 22.33 0.577 0.329
3DGS-DR 23.51 0.638 0.343 25.14 0.783 0.304
Ours 23.54 0.627 0.337 26.65 0.806 0.233

4.3 Ablation Study
We specifically evaluated the effectiveness of radiance transfer com-
pared to spherical harmonics. Additionally, we performed ablation
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Table 4: Normal estimation quality with Gaussian-based
methods evaluated using MAE↓ on the TensoIR dataset and
the Shiny Blender dataset.

GS-IR R3DG 3DGS-DR GShader Ours
TensoIR 5.313 5.914 5.728 5.303 5.347

Shiny Blender 9.328 9.238 3.632 4.800 3.091

Table 5: Ablation study of key components on the Shiny
Blender dataset. "w/o radiance transfer" represents using
SHs to calculate the radiance part in hybrid rendering. "Prop-
agation" denotes simplified normal propagation. "Frozen ge-
ometry" indicates freezing geometry attributes during de-
composition. "w/o hybrid rendering" refers to disabling the
hybrid rendering branch during decomposition.

Ablations NVS PSNR↑ Relighting PSNR↑
ours 33.99 26.16

w/o radiance transfer 32.15 25.85
w/o propagation 33.26 26.09

w/o L𝑚 33.76 25.88
w/ frozen geometry 31.49 24.66
w/o hybrid rendering 32.90 25.18

Rendering Visibility Normal Radiance Relighting

w/o Radiance Transfer

w/ Radiance Transfer

Figure 8: Radiance transfer canmore effectively separate low-
frequency components of appearance, thereby preventing
artifacts caused by overfitting. These artifacts compromise
geometric smoothness and degrade the quality of rendering
and relighting.

studies on simplified normal propagation to validate the contri-
bution of our proposed components. We also evaluate the impact
of the metal reflection prior introduced in Sec. 3.5. For decompo-
sition process, we further conducted experiments of using fixed
geometric parameters and disabling the hybrid rendering branch
(i.e., using only the PBR branch) during appearance decomposi-
tion, to demonstrate the advantages of our dual-branch rendering
framework.

Analysis on radiance transfer.As illustrated in Figure 8, using
radiance transfer instead of spherical harmonics to represent the
radiance component in hybrid rendering reduces floating artifacts

Rendering Albedo Metallic Roughness Normal Environment Lighting

Figure 9: Normal, albedo, roughness, metallic and environ-
ment lighing results on synthetic dataset.

and prevents normal and visibility errors caused by local geometric
inaccuracies, particularly for specular objects. These improvements
significantly enhance the quality of relighting. As shown in Table 5,
radiance transfer also leads to notable improvements in quantitative
results.

Analysis on decomposition process. When decomposing the
appearance, we simultaneously enable hybrid rendering and PBR
to fine-tune the geometry, making it compatible with both ren-
dering models. We also evaluate the effects of freezing geometric
parameters or enabling only the PBR branch, which demonstrates
the limitations of single-branch approaches. As shown in Table 5,
both frozen geometry and enabling the PBR branch only lead to
significant quality degradation. The former occurs because the geo-
metric structure required for hybrid rendering does not fully meet
PBR’s requirements, while the latter leads to geometric mutations,
rendering the baked occlusion ineffective.

Limitation We assume that lighting originates from an infinite
distance, which differs from actual lighting conditions in large-scale
scenes. Additionally, our method does not consider more complex
indirect lighting effects, such as inter-reflections. These limitations
are shown in Figure 10.

GT Ours

Figure 10: Limitation of our method.

5 CONCLUSIONS
We introduce RTR-GS, an inverse rendering framework that enables
realistic novel view synthesis and relighting through Gaussian splat-
ting and deferred rendering. By separating high-frequency and low-
frequency appearances using reflection maps and radiance transfer,
we achieve high-quality hybrid rendering and normal estimation.
Building on this, we further decompose material and lighting from
the appearance by an additional PBR branch. Experimental results
demonstrate that our method delivers competitive performance in
novel view synthesis and relighting across various objects. In the
future, we aim to explore more precise rendering techniques and
incorporate more complex secondary lighting effects.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

RTR-GS: 3D Gaussian Splatting for Inverse Rendering with Radiance Transfer and Reflection MM ’25, October 27–31, 2025, Dublin, Ireland

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019.

Inverse path tracing for joint material and lighting estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2447–2456.

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale represen-
tation for anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 5855–5864.

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter
Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 5470–5479.

[4] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Pe-
ter Hedman. 2023. Zip-nerf: Anti-aliased grid-based neural radiance fields. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 19697–
19705.

[5] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy,
David Kriegman, and Ravi Ramamoorthi. 2020. Deep reflectance volumes: Re-
lightable reconstructions from multi-view photometric images. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part III 16. Springer, 294–311.

[6] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, David Kriegman, and Ravi Ramamoorthi.
2020. Deep 3d capture: Geometry and reflectance from sparse multi-view im-
ages. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5960–5969.

[7] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu, and
Hendrik Lensch. 2021. Nerd: Neural reflectance decomposition from image
collections. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 12684–12694.

[8] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan Barron, and Hen-
drik Lensch. 2021. Neural-pil: Neural pre-integrated lighting for reflectance
decomposition. Advances in Neural Information Processing Systems 34 (2021),
10691–10704.

[9] Brent Burley andWalt Disney Animation Studios. 2012. Physically-based shading
at disney. In Acm Siggraph, Vol. 2012. vol. 2012, 1–7.

[10] Ang Cao and Justin Johnson. 2023. Hexplane: A fast representation for dynamic
scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 130–141.

[11] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
2021. pi-gan: Periodic implicit generative adversarial networks for 3d-aware
image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 5799–5809.

[12] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. Tensorf:
Tensorial radiance fields. In European Conference on Computer Vision. Springer,
333–350.

[13] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav Shri-
vastava. 2021. Nerv: Neural representations for videos. Advances in Neural
Information Processing Systems 34 (2021), 21557–21568.

[14] Euntae Choi and Sungjoo Yoo. 2024. Phys3DGS: Physically-based 3D Gaussian
splatting for inverse rendering. arXiv preprint arXiv:2409.10335 (2024).

[15] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin
Recht, and Angjoo Kanazawa. 2023. K-planes: Explicit radiance fields in space,
time, and appearance. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 12479–12488.

[16] Jian Gao, Chun Gu, Youtian Lin, Zhihao Li, Hao Zhu, Xun Cao, Li Zhang, and
Yao Yao. 2025. Relightable 3D Gaussians: realistic point cloud relighting with
BRDF decomposition and ray tracing. In European Conference on Computer Vision.
Springer, 73–89.

[17] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch, Xueming Yu, Matt
Whalen, Geoff Harvey, Sergio Orts-Escolano, Rohit Pandey, Jason Dourgarian,
et al. 2019. The relightables: Volumetric performance capture of humans with
realistic relighting. ACM Transactions on Graphics (ToG) 38, 6 (2019), 1–19.

[18] Yijia Guo, Yuanxi Bai, Liwen Hu, Ziyi Guo, Mianzhi Liu, Yu Cai, Tiejun Huang,
and Lei Ma. 2024. PRTGS: Precomputed radiance transfer of gaussian Splats for
real-time high-quality relighting. In Proceedings of the 32nd ACM International
Conference on Multimedia. 5112–5120.

[19] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. 2022. Shape, light, and
material decomposition from images using monte carlo rendering and denoising.
Advances in Neural Information Processing Systems 35 (2022), 22856–22869.

[20] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul
Debevec. 2021. Baking neural radiance fields for real-time view synthesis. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 5875–
5884.

[21] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao.
2024. 2d Gaussian splatting for geometrically accurate radiance fields. In ACM
SIGGRAPH 2024 Conference Papers. 1–11.

[22] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping
Wang, and Yuexin Ma. 2024. Gaussianshader: 3d gaussian splatting with shading
functions for reflective surfaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 5322–5332.

[23] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei
Zhou, Zexiang Xu, and Hao Su. 2023. Tensoir: Tensorial inverse rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
165–174.

[24] Brian Karis and Epic Games. 2013. Real shading in unreal engine 4. Proc.
Physically Based Shading Theory Practice 4, 3 (2013), 1.

[25] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3D Gaussian splatting for real-time radiance field rendering. ACM Trans.
Graph. 42, 4 (2023), 139–1.

[26] Simin Kou, Fang-Lue Zhang, Jakob Nazarenus, Reinhard Koch, and Neil A Dodg-
son. 2025. OmniPlane: A recolorable representation for dynamic scenes in omni-
directional videos. IEEE Transactions on Visualization and Computer Graphics
(2025).

[27] Zhengfei Kuang, Yunzhi Zhang, Hong-Xing Yu, Samir Agarwala, Elliott Wu,
Jiajun Wu, et al. 2023. Stanford-orb: a real-world 3d object inverse rendering
benchmark. Advances in Neural Information Processing Systems 36 (2023), 46938–
46957.

[28] Jia Li, Lu Wang, Lei Zhang, and Beibei Wang. 2024. Tensosdf: Roughness-aware
tensorial representation for robust geometry and material reconstruction. ACM
Transactions on Graphics (TOG) 43, 4 (2024), 1–13.

[29] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath,
Ming-Yu Liu, and Chen-Hsuan Lin. 2023. Neuralangelo: High-fidelity neural
surface reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 8456–8465.

[30] Zhihao Liang, Hongdong Li, Kui Jia, Kailing Guo, and Qi Zhang. 2024. GUS-IR:
Gaussian splatting with unified shading for inverse rendering. arXiv preprint
arXiv:2411.07478 (2024).

[31] Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. 2024. Gs-ir: 3d gauss-
ian splatting for inverse rendering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 21644–21653.

[32] Yuan Liu, Peng Wang, Cheng Lin, Xiaoxiao Long, Jiepeng Wang, Lingjie Liu,
Taku Komura, and Wenping Wang. 2023. Nero: Neural geometry and brdf
reconstruction of reflective objects from multiview images. ACM Transactions
on Graphics (TOG) 42, 4 (2023), 1–22.

[33] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and
Bo Dai. 2024. Scaffold-gs: Structured 3d gaussians for view-adaptive render-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 20654–20664.

[34] Guan Luo, Tian-Xing Xu, Ying-Tian Liu, Xiao-Xiong Fan, Fang-Lue Zhang, and
Song-Hai Zhang. 2024. 3D Gaussian editing with a single image. In Proceedings
of the 32nd ACM International Conference on Multimedia. 6627–6636.

[35] Xiaoyang Lyu, Yang-Tian Sun, Yi-Hua Huang, XiuzheWu, Ziyi Yang, Yilun Chen,
Jiangmiao Pang, and Xiaojuan Qi. 2024. 3dgsr: Implicit surface reconstruction
with 3d gaussian splatting. arXiv preprint arXiv:2404.00409 (2024).

[36] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant neural graphics primitives with a multiresolution hash encoding. ACM
Transactions on Graphics (TOG) 41, 4 (2022), 1–15.

[38] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen,
Alex Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting triangular 3d
models, materials, and lighting from images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 8280–8290.

[39] Jakob Nazarenus, Simin Kou, Fang-Lue Zhang, and Reinhard Koch. 2024. Arbi-
trary optics for Gaussian splatting using space warping. Journal of Imaging 10,
12 (2024), 330.

[40] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2022. Dreamfusion:
Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022).

[41] Carolin Schmitt, Simon Donne, Gernot Riegler, Vladlen Koltun, and Andreas
Geiger. 2020. On joint estimation of pose, geometry and svbrdf from a handheld
scanner. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 3493–3503.

[42] Johannes L Schonberger and Jan-Michael Frahm. 2016. Structure-from-motion
revisited. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4104–4113.

[43] Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng,
Jingtuo Liu, Liangjun Zhang, Jian Zhang, Bin Zhou, et al. 2023. Gir: 3d
gaussian inverse rendering for relightable scene factorization. arXiv preprint
arXiv:2312.05133 (2023).

[44] Peter-Pike Sloan, Jan Kautz, and John Snyder. 2023. Precomputed radiance trans-
fer for real-time rendering in dynamic, low-frequency lighting environments. In
Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 339–348.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MM ’25, October 27–31, 2025, Dublin, Ireland Anon. Submission Id: 2556

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[45] Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct voxel grid optimiza-
tion: Super-fast convergence for radiance fields reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5459–5469.

[46] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron,
and Pratul P Srinivasan. 2022. Ref-nerf: Structured view-dependent appearance
for neural radiance fields. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 5481–5490.

[47] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wen-
ping Wang. 2021. Neus: Learning neural implicit surfaces by volume rendering
for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021).

[48] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600–612.

[49] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and
Jun Zhu. 2024. Prolificdreamer: High-fidelity and diverse text-to-3d generation
with variational score distillation. Advances in Neural Information Processing
Systems 36 (2024).

[50] Tong Wu, Jiamu Sun, Yukun Lai, Yuewen Ma, Leif Kobbelt, and Lin Gao. 2024.
DeferredGS: Decoupled and editable Gaussian splatting with deferred shading.
arXiv preprint arXiv:2404.09412 (2024).

[51] Ziyi Yang, Yanzhen Chen, Xinyu Gao, Yazhen Yuan, Yu Wu, Xiaowei Zhou,
and Xiaogang Jin. 2023. Sire-ir: Inverse rendering for brdf reconstruction with
shadow and illumination removal in high-illuminance scenes. arXiv preprint
arXiv:2310.13030 (2023).

[52] Ziyi Yang, Xinyu Gao, Yangtian Sun, Yihua Huang, Xiaoyang Lyu, Wen
Zhou, Shaohui Jiao, Xiaojuan Qi, and Xiaogang Jin. 2024. Spec-gaussian:
Anisotropic view-dependent appearance for 3d gaussian splatting. arXiv preprint
arXiv:2402.15870 (2024).

[53] Yao Yao, Jingyang Zhang, Jingbo Liu, Yihang Qu, Tian Fang, David McKin-
non, Yanghai Tsin, and Long Quan. 2022. Neilf: Neural incident light field for
physically-based material estimation. In European Conference on Computer Vision.
Springer, 700–716.

[54] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of
neural implicit surfaces. Advances in Neural Information Processing Systems 34
(2021), 4805–4815.

[55] Keyang Ye, Qiming Hou, and Kun Zhou. 2024. 3d gaussian splatting with deferred
reflection. In ACM SIGGRAPH 2024 Conference Papers. 1–10.

[56] Keyang Ye, Qiming Hou, and Kun Zhou. 2024. Progressive radiance distillation
for inverse rendering with Gaussian splatting. arXiv preprint arXiv:2408.07595
(2024).

[57] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. 2024.
Mip-splatting: Alias-free 3d gaussian splatting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 19447–19456.

[58] Zehao Yu, Torsten Sattler, and Andreas Geiger. 2024. Gaussian opacity fields:
Efficient and compact surface reconstruction in unbounded scenes. arXiv preprint
arXiv:2404.10772 (2024).

[59] Yu-Jie Yuan, Xinyang Han, Yue He, Fang-Lue Zhang, and Lin Gao. 2024. Munerf:
Robust makeup transfer in neural radiance fields. IEEE Transactions on Visual-
ization and Computer Graphics (2024).

[60] Dingxi Zhang, Yu-Jie Yuan, Zhuoxun Chen, Fang-Lue Zhang, Zhenliang He,
Shiguang Shan, and Lin Gao. 2024. Stylizedgs: Controllable stylization for 3d
gaussian splatting. arXiv preprint arXiv:2404.05220 (2024).

[61] Jingyang Zhang, Yao Yao, Shiwei Li, Jingbo Liu, Tian Fang, David McKinnon,
Yanghai Tsin, and Long Quan. 2023. Neilf++: Inter-reflectable light fields for
geometry and material estimation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 3601–3610.

[62] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. 2021.
Physg: Inverse rendering with spherical gaussians for physics-based material
editing and relighting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 5453–5462.

[63] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The unreasonable effectiveness of deep features as a perceptual metric. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
586–595.

[64] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T
Freeman, and Jonathan T Barron. 2021. Nerfactor: Neural factorization of shape
and reflectance under an unknown illumination. ACM Transactions on Graphics
(ToG) 40, 6 (2021), 1–18.

[65] Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei
Zhou. 2022. Modeling indirect illumination for inverse rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18643–
18652.

[66] Zuo-Liang Zhu, Beibei Wang, and Jian Yang. 2024. Gs-ror: 3d gaussian splatting
for reflective object relighting via sdf priors. arXiv preprint arXiv:2406.18544
(2024).

10


	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Neural representations
	2.2 Inverse rendering
	2.3 Reflective object reconstruction

	3 Method
	3.1 Overview
	3.2 Deferred Rendering and Normal Modeling
	3.3 Hybrid Rendering and Radiance Transfer
	3.4 Illumination Modeling and Decomposition
	3.5 Optimization

	4 Experiments
	4.1 Evaluation Setup
	4.2 Comparison with previous works
	4.3 Ablation Study

	5 Conclusions
	References

