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SSD-GS: SCATTERING AND SHADOW DECOMPOSI-
TION FOR RELIGHTABLE 3D GAUSSIAN SPLATTING
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Victoria University of Wellington

Figure 1: Overview of the proposed SSD-GS pipeline. Our method incorporates four physically
inspired reflectance terms: diffuse, specular, shadow, and subsurface scattering, to model realistic
light–material interactions. These components are progressively introduced during training, allow-
ing the network to gradually disentangle complex illumination effects and improve relighting fidelity
under unseen lighting conditions.

ABSTRACT

We present SSD-GS, a physically-based relighting framework built upon 3D
Gaussian Splatting (3DGS) that achieves high-quality reconstruction and photore-
alistic relighting under novel lighting conditions. In physically-based relighting,
accurately modeling light-material interactions is essential for faithful appearance
reproduction. However, existing 3DGS-based relighting methods adopt coarse
shading decompositions, either modeling only diffuse and specular reflections or
relying on neural networks to approximate shadows and scattering. This leads to
limited fidelity and poor physical interpretability, particularly for anisotropic met-
als and translucent materials. To address these limitations, SSD-GS decomposes
reflectance into four components: diffuse, specular, shadow, and subsurface scat-
tering. We introduce a learnable dipole-based scattering module for subsurface
transport, an occlusion-aware shadow formulation that integrates visibility esti-
mates with a refinement network, and an enhanced specular component with an
anisotropic Fresnel-based model. Through progressive integration of all compo-
nents during training, SSD-GS effectively disentangles lighting and material prop-
erties, even for unseen illumination conditions, as demonstrated on the challeng-
ing OLAT dataset. Experiments demonstrate superior quantitative and perceptual
relighting quality compared to prior methods and pave the way for downstream
tasks, including controllable light source editing and interactive scene relighting.

∗Fang-Lue Zhang (fanglue.zhang@vuw.ac.nz) is the corresponding author
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1 INTRODUCTION

Photorealistic 3D reconstruction with relightable capabilities has become increasingly important
across domains such as AR/VR for digital humans, cinematic visual effects, cultural heritage preser-
vation, and medical simulation. Traditional methods (Levoy & Hanrahan, 1996; Seitz & Dyer, 1996;
1997; Snavely et al., 2006), however, typically compromise either geometric precision or photore-
alistic quality, particularly in complex lighting conditions or with reflective and textured surfaces.
While these approaches enabled view synthesis under captured illumination, they relied on explicit
geometric reconstructions and provided no means to disentangle reflectance from lighting. As a
result, they cannot support relighting under novel illumination, which is essential for realistic ap-
pearance reproduction in many applications. More recently, neural rendering approaches, in partic-
ular those based on Neural Radiance Fields (NeRF) (Mildenhall et al., 2020), have made notable
progress by jointly encoding geometry and appearance in an implicit volumetric representation.
Methods such as DNL (Gao et al., 2020) and NRHints (Zeng et al., 2023) introduce explicit lighting
supervision and learnable shading representations to support relightable view synthesis. However,
NeRF-based methods typically suffer from high computational cost, which limits their practicality
for interactive or real-time applications.

3D Gaussian Splatting (3DGS), initially developed for real-time radiance field rendering, has
emerged as a compelling alternative to NeRF-style implicit representations that rely on ray march-
ing, offering superior computational efficiency and rendering fidelity. Recent extensions of 3DGS
for relightable rendering fall into two main paradigms. Some methods assume static lighting con-
ditions during training (Jiang et al., 2023; Liang et al., 2024; Chen et al., 2024; Gao et al., 2024),
which fundamentally lacks their flexibility for photorealistic relighting. Others leverage dynamic
lighting configurations such as one-light-at-a-time (OLAT) capture setups (Bi et al., 2024; Kuang
et al., 2024; Fan et al., 2025; Dihlmann et al., 2025), offering more physically plausible supervision
but making it difficult to disentangle material properties from illumination. This disentanglement
is crucial for simulating complex light transport behaviors of real-world materials, where nonlinear
interactions give rise to visually critical phenomena such as gradient soft shadows and subsurface
scattering. Consequently, developing robust techniques to model these intricate lighting-material
interactions remains a substantial technical challenge for relightable 3D reconstruction.

We propose SSD-GS, a physically-based relighting method designed for 3DGS, where “physically-
based” follows the real-time PBR convention and denotes the use of physically inspired reflectance
models within an efficient rasterized framework. Built upon the 3DGS pipeline, our framework
explicitly decomposes complex reflectance into four components: diffuse, specular, subsurface scat-
tering, and shadow. Our main contributions are:

• We introduce a learnable dipole-based scattering module that simulates realistic subsurface
scattering effects using physically motivated diffusion profiles.

• We design an occlusion-aware shadow formulation that combines a visibility prior with
a learned refinement network, enabling accurate modeling of view- and light-dependent
shadowing effects.

• We progressively integrate all reflectance components (diffuse, specular, shadow, and sub-
surface scattering) during training and refine both lighting and camera conditions, leading
to improved relighting quality and stronger generalization under novel illuminations.

2 RELATED WORKS

Accurate relighting and novel view synthesis require recovering both scene geometry and material
appearance under illumination. We review NeRF- and 3DGS-based relighting methods, followed by
subsurface scattering (SSS) models for physically plausible rendering.

NeRF-based Relighting. Neural Radiance Fields (NeRF)(Mildenhall et al., 2020) represent scenes
as volumetric fields optimized from posed RGB images, enabling photorealistic novel view synthesis
under fixed lighting. Extensions for relighting factorize appearance into reflectance and illumination
using priors or explicit transport modeling. For instance, NeRV(Srinivasan et al., 2021), NeRD (Boss
et al., 2021), and NeRFactor (Zhang et al., 2021b) disentangle reflectance under static lighting with
geometry-aware priors, while PhySG (Zhang et al., 2021a) uses spherical Gaussians to represent
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BRDFs and environment lighting. To address directional lighting, ReNeRF (Xu et al., 2023) models
near-field OLAT illumination via a spherical codebook and light transport decoder, enabling spa-
tially varying lighting. NRHints(Zeng et al., 2023) injects OLAT-derived shadow and highlight hints
into a NeRF-style radiance field, achieving relighting effects comparable to DNL(Gao et al., 2020)
but using a fully volumetric, single-branch design. However, NeRF-based methods suffer from im-
plicit, non-physical representations, making decomposition hard to interpret or control. Moreover,
they are computationally expensive, requiring hours of training per scene.

Gaussian-based Relighting. 3DGS (Kerbl et al., 2023) models scenes as point clouds of anisotropic
Gaussians with learned extent, opacity, and view-dependent appearance. While efficient for view
synthesis, its SH-based color encoding (Ramamoorthi & Hanrahan, 2001; Sloan et al., 2002) is
inherently limited to smooth, low-frequency angular variations, which reduces expressiveness for
capturing high-frequency effects such as specular highlights and scattering. Several extensions en-
hance 3DGS with physically motivated components, including GaussianShader (Jiang et al., 2023),
GI-GS (Chen et al., 2024), and R3DG (Gao et al., 2024). However, these typically assume static
lighting conditions, which prevents them from generalizing to novel illuminations. Their relightable
variants usually perform global relighting using environmental maps, but lack the ability to model
precise changes in individual light sources. To overcome these limitations, recent works exploit dy-
namic lighting conditions, most notably one-light-at-a-time (OLAT) datasets. GS3 (Bi et al., 2024)
decomposes reflectance by modeling diffuse and specular terms at the Gaussian level, while han-
dling shadows and other residual effects at the pixel level in a deferred rendering style (Ye et al.,
2024). However, this design struggles to capture complex light transport phenomena such as soft
shadows and indirect illumination. OLAT Gaussians (Kuang et al., 2024) use directional encodings
with two MLPs to model incident and scattering components, but their use of a proxy mesh for
normal supervision makes them highly sensitive to the quality of the proxy geometry. RNG (Fan
et al., 2025) achieves improved shadow quality by introducing a latent appearance code, which re-
places physically meaningful shading representations and thus sacrifices interpretability. Inspired by
these OLAT-based approaches, we introduce physically interpretable shading to better disentangle
lighting–material interactions and extend performance to more diverse datasets.

Figure 2: Relighting results from our SSD-GS pipeline. The same Bunny view under two different
lighting conditions from the SSS-GS synthetic dataset (Dihlmann et al., 2025).

Subsurface Scattering. Subsurface scattering (SSS) has been extensively studied for simulating
light transport in translucent materials such as skin, jade, wax, and marble. Classical approaches,
including the standard dipole (Jensen et al., 2001), quantized dipole (D’Eon & Irving, 2011), and di-
rectional dipole (Frisvad et al., 2014), offer efficient and realistic approximations. Extensions such
as shape-adaptive dipole models (Vicini et al., 2019) and advanced BSSRDF formulations (Yan
et al., 2017) further enhance accuracy and generality. More recently, subsurface scattering has been
explored in neural rendering frameworks through learning-based techniques. Neural SSS (Tg et al.,
2024) approximates the translucent appearance using per-view and per-light neural reflectance fields,
but it relies heavily on dense supervision and lacks physical interpretability. In the context of Gaus-
sian Splatting, SSS-GS (Dihlmann et al., 2025) directly learns the subsurface scattering radiance via
a neural network conditioned on Gaussian and lighting inputs. The output is blended with BRDF
shading using a learned weight, treating SSS as a residual term rather than a physically motivated
subsurface model. In contrast, we integrate a physically grounded subsurface scattering approach
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into the 3DGS pipeline, based on the standard dipole diffusion approximation (Jensen et al., 2001).
This classical method provides a closed-form BSSRDF that approximates multiple scattering in ho-
mogeneous media. By embedding it into the Gaussian Splatting framework, we enable efficient,
interpretable simulation of soft scattering effects, while maintaining modular compatibility with
other shading components such as diffuse, specular, and shadow terms.

3 PRELIMINARY

Our method builds on the 3D Gaussian Splatting (3DGS) framework (Kerbl et al., 2023), which
represents a scene as a set of anisotropic 3D Gaussians. Each Gaussian is defined by its center
xi, opacity αi, and a covariance matrix Σi. The covariance matrix is parameterized via a rotation
matrix Ri and a scaling matrix Si, such that Σi = RiSiS

⊤
i R⊤

i . During rendering, the Gaussians are
projected onto the image plane and composited using front-to-back alpha blending as:

Cpixel =
N∑
i=1

Ti · αi ·Ci, Ti =
i−1∏
j=1

(1− αj) (1)

Each Gaussian color Ci is computed using a view-dependent SH expansion:

Ci(v) =
B∑

b=1

ci,b · Yb(v) (2)

While effective for encoding smooth appearance, this SH-based model lacks physical grounding
and struggles to capture high-frequency view-dependent effects. In this work, we replace it with a
decomposed physically-based model to better capture full-frequency light–material interactions.

4 METHODOLOGY

We extend the 3D Gaussian Splatting (3DGS) framework by incorporating a physically-based re-
flectance model that replaces its original spherical harmonics (SH)-based appearance representa-
tion. Our formulation decomposes shading into four components—diffuse, specular, shadow, and
subsurface scattering (SSS)—each modeled either analytically or using lightweight neural fields.
These components are evaluated per-Gaussian and composited to form the final image, enabling
interpretable supervision and relightable rendering under novel illumination. Their visual effects
are illustrated in Fig. 2, and a detailed ablation study is provided in Sec. 5.3. An overview of the
formulation is illustrated in Fig. 1.

4.1 PBR-BASED SHADING

We formulate a physically-based shading function that operates directly on the 3D Gaussian rep-
resentation. Unlike prior work that employs view-dependent spherical harmonics (SH) for color
synthesis (Kerbl et al., 2023), we decompose reflectance into physically interpretable terms, en-
abling improved photorealism, per-component supervision, and controllable relighting. The color
of each Gaussian is computed as:

Ci = (cdfd + csfs) · S(x) + csssfsss (3)

where: fd, fs, fsss denote the scalar reflectance intensities for diffuse, specular, and subsurface
scattering, defined in Eqs. 9, 10, and 5, respectively; cd, cs, csss ∈ R3 are the corresponding learned
base colors for each reflectance term; S(x) denotes the soft shadow factor, computed as a density-
weighted average over shadow rays and further refined using an MLP, with its detailed formulation
given in Eq. 8. This decomposition is evaluated per Gaussian and composited through the 3DGS
forward-rendering pipeline, where alpha blending accumulates Gaussian contributions into the final
pixel color. The resulting image is supervised with a pixel-wise loss against the ground truth. A
detailed analysis of the interaction between the shadow term and subsurface scattering is provided
in Appendix E.2.
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4.2 SUBSURFACE SCATTERING TERM

We model subsurface scattering (SSS) using the standard dipole diffusion profile, with scattering
properties defined per Gaussian. To predict these parameters, we train a neural field ΘSSS that maps
spatial and directional inputs to the corresponding scattering coefficients.

{σs, σa, r} = ΘSSS(x | wo,wi,n,m) (4)
where x denotes the Gaussian center, ωi and ωo are the light and view directions, n is the surface
normal derived from its local z-axis, and m ∈ R6 is a learnable per-Gaussian material embedding;
σs, σa, and r denote the scattering coefficient, absorption coefficient, and surface separation distance
used in the dipole formulation.

The subsurface scattering (SSS) predictor is implemented as a 6-layer MLP with a hidden size of 256
and ReLU activations. It takes as input the positional encodings (with L = 4 frequency bands) of the
spatial location x, the viewing direction ωo, and the lighting direction ωi, as well as the local surface
normal n and a per-Gaussian material embedding m. To ensure physical plausibility and improve
training stability, the network outputs are passed through sigmoid activations and rescaled to fall
within plausible material-specific ranges: σs, σa ∈ [0.05, 2.05], and r ∈ [0.1, 3.1]. We evaluate the
standard dipole diffusion profile (Jensen et al., 2001) as:

fsss(r) =
α′

4π

(
zr(σtdr + 1)

e−σtdr

d3r
+ zrzv(σtdr + 1)

e−σtdv

d3v

)
(5)

where α′ = σs

σs+σa
, σt = σs + σa, zr and zv are the depths of the real and virtual dipole sources,

determined by the optical parameters (σs, σa, η), and dr, dv are the corresponding distances from
the shading point to the real and virtual dipole sources, computed from the surface separation r.

Our SSS formulation combines physically grounded modeling with learnable parameter prediction,
enabling realistic reproduction of subsurface scattering effects without requiring external geome-
try (Kuang et al., 2024). Because surface normals and material properties are inferred directly from
the Gaussian representation, the system remains robust under challenging geometric conditions. As
a result, it generalizes well to complex or noisy regions where mesh-derived normals may be unre-
liable, thus preserving effective scattering estimation.

4.3 SHADOW TERM

We model soft shadows using a two-stage approach that combines per-ray shadow evaluation with
neural refinement. In the first stage, for each Gaussian we trace a shadow ray from the light source to
every pixel and accumulate transmittance into visibility cues. In the second stage, a compact neural
module takes these cues, together with geometry and material features, and predicts a scalar decay
factor used in shading.

Stage 1: Shadow Evaluation. Given a light direction ωi, each Gaussian considers the set of
pixels i covered by its 2D projection. For each pixel, we evaluate a shadow ray from the light source
toward that pixel and accumulate the opacity of intervening Gaussians. This yields a continuous
per-ray transmittance

vi =
∏
k∈Oi

(1− αk), (6)

where Oi is the depth-ordered set of Gaussians intersected by the shadow ray, and αk ∈ [0, 1]
denotes the opacity of Gaussian k.

To obtain a soft shadow estimate, these per-ray transmittance values are aggregated using the Gaus-
sian’s projected density as weights. Let ρi denote the projected density of Gaussian g at pixel i. The
coarse visibility of Gaussian g is then defined as the density-weighted expectation,

v̂g =

∑
i ρi vi∑
i ρi

, (7)

which summarizes how much light from the direction ωi reaches the Gaussian g after accounting
for overlapping geometry, and serves as a compact visibility estimate.
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Stage 2: Neural Refinement. The coarse visibility v̂ captures the primary directional shadowing
trend but may miss fine variations arising from contact shadows, geometric details, and material-
dependent attenuation. To account for these effects, we refine v̂ using a lightweight neural mod-
ule Θshad, which predicts a shadow attenuation term as a function of position:

S(x) = Θshad(x | v̂, ωi,m) (8)

The shadow refinement network is implemented using a 3-layer MLP with 32 hidden units per layer
and ReLU activations. Its inputs include the Gaussian center x, incident light direction ωi, coarse
shadow estimate v̂, and material embedding m. To capture high-frequency spatial and directional
variation, both x and ωi are encoded using positional encoding with L = 3 frequency levels.

The refined shadow term S(x) modulates the diffuse and specular components of our shading model,
while the scattering term is added separately. This produces the final illumination contribution for
Gaussian g as defined in Eq. 3.

Figure 3: Shadow pipeline visualization. For each scene, we show per-ray transmittance vi, coarse
visibility v̂g , the refined shadow S(x), and the final rendered result with metrics. The progression
illustrates how continuous transmittance yields smooth, geometry-aware soft shadows.

A visual illustration of this progression from per-ray transmittance vi, to coarse visibility v̂g , and
finally to the refined shadow S(x) is provided in Fig. 3. The figure highlights how continuous
volumetric visibility naturally produces smooth, geometry-consistent soft shadows under point-light
illumination. A complementary comparison against screen-space shadow accumulation methods is
included in Appendix G.2.
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4.4 DIFFUSE AND SPECULAR TERMS

We decompose direct shading into diffuse and specular components. The diffuse term is mod-
eled with a Lambertian BRDF, which assumes uniform surface reflectance and produces view-
independent, cosine-weighted reflection. Although simple, this model provides a stable foundation
for capturing low-frequency appearance and ensures physically meaningful supervision during the
early stages of training. The specular term, in contrast, accounts for high-frequency, view-dependent
reflections. We represent it as a Fresnel factor (Schlick, 1994) modulated by anisotropic spherical
Gaussian (ASG) bases (Xu et al., 2013). The Fresnel term captures the angular dependence of re-
flection intensity, particularly the sharp increase near grazing angles, while the ASG bases provide
a compact yet expressive representation of anisotropic highlights. This formulation allows us to re-
produce complex effects such as brushed metals and fabrics. Further technical details and equations
are provided in Appendix B.

4.5 TRAINING METHODOLOGY

To stabilize convergence and reduce interference between reflectance components, we adopt a pro-
gressive training strategy. Four components are introduced in a coarse-to-fine order across simple
phases defined by a small set of iteration thresholds (see Appendix A.1, Fig. 6 and Fig. 7 for details).
A single default configuration is used for all scenes, ensuring that the approach remains stable and
reproducible. Concurrently, we refine camera poses and lighting positions throughout training. The
camera adjustment module is activated once the shadow term is introduced, while lighting position
refinement begins during the specular phase. Experimental results are presented in our ablation
study (see Sec. 5.3 and Appendix E.1).

5 EXPERIMENTS

We evaluate our relightable rendering method on both real-captured and synthetic OLAT datasets.
This section first introduces the evaluated methods and datasets, followed by quantitative and quali-
tative comparisons. We then present ablation studies to assess the contribution of individual model
components and training strategies. All experiments are conducted on a workstation equipped with
an NVIDIA RTX 3090 GPU and an Intel Core i7-14700K CPU, running Windows 11 Education.

5.1 DATASETS

The OLAT datasets provide controlled illumination by sequentially activating individual point light
sources, and are widely used benchmarks for evaluating relightable view synthesis. To ensure a
consistent and challenging setup, test-time lighting directions are excluded from training.

Real Dataset. We use the seven OLAT-captured dataset provided by NRHints (Zeng et al., 2023):
Cat, CatSmall, CupFabric, Fish, FurScene, Pikachu, and Pixiu. Each scene contains 500–1500
training images and 45–200 test views, all rendered against a black background. CatSmall, CupFab-
ric, and Pikachu are rendered at a resolution of 1024×1024, while the remaining four use 512×512.

Synthetic Datasets. We use the six synthetic scenes released by GS3 (Bi et al., 2024): Translucent,
AnisoMetal, Drums, FurBall, Hotdog, and Lego. Each scene includes 2000 training images and 400
testing images at a resolution of 512×512, rendered against a white background. In addition, we
evaluate on the five synthetic scenes from SSS-GS (Dihlmann et al., 2025): Bunny, Candle, Dragon,
Soap, and Statue, which emphasize subsurface scattering effects. Each scene includes 500 training
images and 500 test views at a downscaled resolution of 256×256 against a black background.

5.2 QUANTITATIVE AND QUALITATIVE ANALYSIS

First, we evaluate both reconstruction quality on the training set and relighting performance on the
test set under unseen lighting conditions.

We then compare our method against four representative Gaussian Splatting–based approaches:
vanilla 3DGS (baseline), GI-GS (Chen et al., 2024) as a representative of relighting under static
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Table 1: Quantitative comparison results. The best/second-best results are colored in red / orange .

(a) Comparison with the original 3DGS (Kerbl et al., 2023), GI-GS (Chen et al., 2024), GS3 (Bi et al., 2024),
and RNG (Fan et al., 2025) on the real datasets from NRHints (Zeng et al., 2023).

Method
Dataset Cat CatSmall CupFabric Fish FurScene Pikachu Pixiu

Train Test Train Test Train Test Train Test Train Test Train Test Train Test
PSNR ↑

3DGS 15.2225 14.5326 22.8367 22.5727 24.9219 25.0488 22.8247 22.8411 18.7746 18.4838 19.8235 19.6310 20.0114 18.5501
GI-GS 14.5256 13.9988 22.3667 22.3222 24.0188 24.3821 22.2452 22.7500 17.9882 17.8520 19.2010 19.1867 19.0030 18.1064
GS3 30.0755 27.4081 34.8341 34.3136 36.5090 36.1375 31.5265 30.7218 28.6820 28.2228 30.0745 29.4128 30.6831 29.7001
RNG 27.7478 26.6059 34.7398 34.3709 37.7308 37.3219 29.1378 29.0835 27.9967 27.6930 31.6145 31.2646 29.8650 28.8554
Ours 30.0854 27.6844 35.2740 34.6472 38.0656 37.4702 32.0748 31.1646 31.7846 30.7349 32.4506 31.9298 33.6065 31.1213

SSIM ↑
3DGS 0.7140 0.6962 0.9097 0.8896 0.9407 0.9430 0.8424 0.8312 0.7999 0.7869 0.9053 0.9000 0.8624 0.8298
GI-GS 0.3210 0.3162 0.8765 0.8750 0.9136 0.9178 0.7430 0.7437 0.5918 0.5811 0.8708 0.8724 0.6229 0.6117
GS3 0.9240 0.9028 0.9777 0.9759 0.9825 0.9821 0.9306 0.9209 0.9426 0.9368 0.9621 0.9605 0.9457 0.9394
RNG 0.8556 0.8427 0.9709 0.9687 0.9803 0.9797 0.8909 0.8923 0.9195 0.9149 0.9673 0.9661 0.9244 0.9187
Ours 0.9224 0.9027 0.9786 0.9767 0.9839 0.9833 0.9363 0.9260 0.9576 0.9518 0.9675 0.9637 0.9524 0.9452

LPIPS ↓
3DGS 0.2983 0.3033 0.1149 0.1183 0.0894 0.0868 0.1700 0.1814 0.2044 0.2101 0.1116 0.1103 0.1473 0.1721
GI-GS 0.3496 0.3518 0.1310 0.1339 0.1151 0.1116 0.1996 0.2063 0.2460 0.2492 0.1371 0.1347 0.2957 0.3089
GS3 0.1228 0.1338 0.0624 0.0659 0.0501 0.0506 0.0836 0.0910 0.0778 0.0807 0.0711 0.0717 0.0795 0.0826
RNG 0.1959 0.2023 0.0586 0.0619 0.0373 0.0376 0.1269 0.1292 0.1084 0.1105 0.0507 0.0514 0.1021 0.1057
Ours 0.1251 0.1357 0.0621 0.0656 0.0503 0.0506 0.0779 0.0855 0.0690 0.0724 0.0679 0.0679 0.0751 0.0791

(b) Comparison with 3DGS (Kerbl et al., 2023), GI-GS (Chen et al., 2024), GS3 (Bi et al., 2024), and RNG (Fan
et al., 2025) on the GS3 synthetic datasets.

Method
Dataset Translucent AnisoMetal Drums FurBall Hotdog Lego

Train Test Train Test Train Test Train Test Train Test Train Test
PSNR ↑

3DGS 17.1853 16.4899 18.1692 17.1009 26.5180 24.5093 21.5473 20.1206 19.3050 16.9535 19.0612 15.9886
GI-GS 17.1222 16.0766 17.7309 15.9567 26.7554 24.6177 21.3335 19.5295 19.1535 16.8118 19.5919 16.4229
GS3 31.1327 32.1999 30.1878 28.8219 34.0111 33.2688 34.6201 34.9845 32.1779 32.7244 31.2224 30.5617
RNG 28.1919 28.5659 26.4611 25.9203 20.4970 20.3033 24.5084 23.4342 29.4095 29.5277 18.5810 18.4872
Ours 32.6058 32.3919 31.1077 30.0448 34.2448 33.5514 35.4793 35.1639 32.4901 32.1330 31.1434 30.4664

SSIM ↑
3DGS 0.8984 0.8958 0.8995 0.8849 0.9556 0.9439 0.9095 0.8951 0.8956 0.8599 0.8514 0.7904
GI-GS 0.8651 0.8586 0.8537 0.8304 0.9066 0.8941 0.8720 0.8592 0.8636 0.8282 0.8128 0.7647
GS3 0.9787 0.9775 0.9702 0.9635 0.9865 0.9841 0.9747 0.9707 0.9764 0.9745 0.9704 0.9581
RNG 0.9586 0.9598 0.9440 0.9393 0.9199 0.9244 0.9277 0.9204 0.9608 0.9572 0.8756 0.8616
Ours 0.9835 0.9823 0.9762 0.9698 0.9870 0.9848 0.9776 0.9733 0.9776 0.9743 0.9706 0.9570

LPIPS ↓
3DGS 0.0755 0.0748 0.0638 0.0704 0.0371 0.0442 0.0918 0.0865 0.0882 0.1128 0.1101 0.1416
GI-GS 0.1137 0.1155 0.1084 0.1179 0.1142 0.1242 0.1643 0.1694 0.1368 0.1638 0.1458 0.1643
GS3 0.0247 0.0254 0.0304 0.0341 0.0145 0.0160 0.0566 0.0524 0.0297 0.0305 0.0323 0.0401
RNG 0.0438 0.0402 0.0490 0.0491 0.0691 0.0685 0.1290 0.1264 0.0473 0.0484 0.1419 0.1470
Ours 0.0201 0.0200 0.0255 0.0295 0.0144 0.0157 0.0482 0.0442 0.0293 0.0326 0.0331 0.0419

(c) Comparison with SSS-GS (Dihlmann et al., 2025) and KiloOSF (Yu et al., 2022) on the SSS-GS synthetic
datasets. For baselines, we report the average results directly from the respective papers, while the per-scene
results of our method are provided in the Tab. 3

Method
Dataset Train (Average) Test (Average) Other Metrics

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FPS Train T. GPU
KiloOSF - - - 25.91± 1.88 0.93± 0.02 0.097± 0.03 14.4 > 20 h RTX 4090
SSS-GS - - - 35.01± 1.01 0.972± 0.01 0.040± 0.01 154.8± 28.26 < 1 h RTX 4090
Ours (w/o Opt) 40.7087 0.9907 0.0123 37.4409 0.9843 0.0186 66.28± 14.37 < 2 h RTX 3090
Ours (w/ Opt) 41.8705 0.9924 0.0099 38.3542 0.9863 0.0158 61.50± 16.23 ≈ 2.5 h RTX 3090

illumination, and GS3 (Bi et al., 2024) and RNG (Fan et al., 2025) as representatives of OLAT-based
relighting. All methods are trained for 100K iterations with identical settings, and experiments are
conducted on both the NRHints real dataset and the GS3 synthetic dataset for fair comparison.

Finally, to further validate the effectiveness of our physically based SSS shading term, we compare
against SSS-GS (Dihlmann et al., 2025) and KiloOSF (Yu et al., 2022) on the SSS-GS synthetic
dataset, using the quantitative results reported in the SSS-GS paper. Following the experimental
setup in (Dihlmann et al., 2025), our method is trained for 60K iterations and rendered on a black
background to ensure comparability.

Quantitative Results. As shown in Tab. 1, our method achieves consistently strong performance
across both training and test sets. By introducing a physically based decomposition of shading terms,
our approach yields clear numerical advantages on datasets with pronounced scattering and specular
effects, while achieving comparable results to other relighting methods on datasets dominated by
low-frequency appearance, demonstrating strong generalization across diverse scenarios.

Qualitative Results. Fig. 4 presents visual comparisons on the real-world scenes, while addi-
tional results on synthetic datasets are provided in Appendix C.1 and C.2. Compared to existing
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Figure 4: Qualitative comparison on real datasets from NRHints (Zeng et al., 2023). It presents
relighting results on the test set under novel lighting. The best/second-best results (based on PSNR)
are highlighted in red / orange .

approaches, our method produces relighting results that are consistently more faithful to the ground
truth, especially in challenging scenes with complex material properties and light–material interac-
tions. In particular, GS3 often fails to capture sharp shadow boundaries and tends to introduce noise
in shadow regions, notably in scenes such as Fish and FurBall. RNG, while capturing reasonable
global appearance, frequently loses fine-scale reflectance and geometry details. For instance, the
cat’s nose is reconstructed as a flat white region instead of retaining its pink tone and curvature, and
specular floor textures in the Fish scene are oversmoothed under strong lighting. These qualitative
differences demonstrate our model’s ability to preserve both soft shading and high-frequency details
and its robust generalization to unseen lighting.

5.3 ABLATION STUDY

Reflectance Components. We evaluate different combinations of reflectance terms to understand
their individual and cumulative contributions. Specifically, we compare: (A) Diffuse only, serving
as a baseline; (B) adding specular; (C) adding subsurface scattering; and (D) the full model with all
terms. We also examine ablations from the full model by removing: (E) the specular term, or (F)
the scattering term. The full model (D) achieves the best overall performance. Subtractive ablations
confirm these trends: removing either specular (E) or scattering (F) leads to noticeable degradation.

Training Schedule. We examine alternative strategies for introducing reflectance components dur-
ing training: (H) joint training of all terms from the start; (I) our progressive schedule (Diffuse →
Shadow → Scatter → Specular); (J) a non-physical variant swapping the last two; and (K) a variant
that adds all terms together after a diffuse-only warm-up. The results demonstrate the effectiveness
of our progressive strategy (I), which yields superior reconstruction of reflectance components.

While the quantitative results across different compositions and training schedules remain relatively
close (see Tab. 2 and the additional scenes in Tab. 4), the visual decompositions (see Fig. 5 and

9



Published as a conference paper at ICLR 2026

Figure 5: Visualization of reconstructed components under different reflectance decompositions and
training schedules on the Pixiu scene from the NRHints real dataset. Top: six reflectance composi-
tions (Comp. A-F); Bottom: four training schedules (Sched. H-K).

Table 2: Ablation study results on the real scene Pixiu.

Method
Dataset Train Set Test Set

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
A: Diff 20.2869 0.5701 0.1055 20.1878 0.5583 0.1061

B: D + S 20.7321 0.6800 0.0966 20.5692 0.6683 0.0992
C: D + S + SSS 25.1545 0.9336 0.0825 24.8100 0.9274 0.0857
D: Full (Ours) 33.6065 0.9524 0.0751 31.1213 0.9452 0.0791

E: Full – S 32.3487 0.9489 0.0817 30.5952 0.9429 0.0844
F: Full – SSS 31.5332 0.7318 0.0818 30.4095 0.7204 0.0850

H: Joint 32.5452 0.9500 0.0781 31.0880 0.9441 0.0812
I: Prog. Phys (Ours) 33.6065 0.9524 0.0751 31.1213 0.9452 0.0791

J: Prog. NonPhys 32.5606 0.9499 0.0776 31.0973 0.9443 0.0807
K: Prog. Merge 33.3438 0.9520 0.0758 31.0486 0.9449 0.0794

Fig. 12) show meaningful differences that highlight the importance of proper terms and training
strategies. For example, in Composition F, removing the scattering term leads to noticeable arti-
facts, where both the diffuse and shadow components begin to absorb scattering, resulting in a more
translucent appearance that compromises the sharpness of shadows. Similarly, in Schedule K, in-
troducing multiple reflectance terms simultaneously causes training interference, where overlapping
gradients between specular and scattering degrade the disentanglement quality. These artifacts are
less evident in scalar metrics but manifest clearly in the visual outputs, underscoring the need for
structured supervision and progressive learning.

6 CONCLUSION

We demonstrate that progressively introducing reflectance terms via a carefully designed training
schedule enables our method to decompose scene illumination effectively and support relighting
under novel lighting. Although we do not explicitly model multi-bounce global illumination, the
combination of continuous volumetric visibility and the learned scattering term already captures
the most perceptually important low-frequency indirect effects. While our current implementation
relies on a rasterization-based pipeline, which does not fully capture physical light transport, fu-
ture work could integrate ray or path tracing to improve physical realism. Incorporating additional
supervision, such as multi-term losses, may further reduce role leakage and improve disentangle-
ment of reflectance components. Material-aware grouping of Gaussians using the learned material
latent space could produce a more structured representation, facilitating controllable relighting and
scene editing. Overall, our work establishes a solid foundation for physically grounded, editable
relightable rendering.
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A IMPLEMENTATION DETAILS

Progressive Training. Our experiments follow the reflectance Composition D and the progressive
Schedule I described in Sec. 5.3. For fair comparison, we train each scene for 100K iterations on
the NRHints and GS3 datasets, and for 60K iterations on the SSS-GS dataset to match the original
settings. The overall progressive training process is illustrated in Fig. 6 and Fig. 7.

Figure 6: Illustration of the progressive training schedule on the pixiu scene from the NRHints real
dataset (Zeng et al., 2023). The model is trained for a total of 100K iterations.

Specifically, during the initial 5K iterations, only the diffuse term contributes to shading. This warm-
up phase stabilizes coarse geometry and appearance, since all Gaussians are randomly initialized
(10K points uniformly distributed on the unit sphere) from NeRF JSON inputs. These early diffuse-
only iterations are therefore critical for forming a reliable Gaussian structure.

From 5K iterations onward, we introduce the shadow term, which provides a first approximation of
light visibility and substantially improves lighting initialization. At 9K iterations, the subsurface-
scattering term is activated to model low-frequency, multiple-scattering effects in translucent ma-
terials. Between 9K and 16K iterations, shadow gradients are temporarily held fixed so that the
scattering term can converge without interference from competing gradients. This schedule is moti-
vated by the longer convergence needs of scattering, which would otherwise remain underfitted.
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After 16K iterations, we introduce the specular term to capture high-frequency details and view-
dependent highlights. Optimizing specular too early tends to dominate smoother reflectance compo-
nents, especially subsurface scattering, since the optimizer naturally prioritizes sharper signals (see
Sched. H in Fig. 5 and Fig. 12). To address this, we temporarily freeze gradients of the scattering
term between 13K and 20K iterations, allowing specular learning to progress without suppressing
low-frequency transport. Additionally, from 16K to 20K iterations we suspend updates to the ASG
lobe parameters (scale and rotation), so the specular module first focuses on Fresnel intensity before
refining anisotropic lobe orientations.

In summary, the progressive schedule gradually disentangles low- and high-frequency reflectance
phenomena, balancing the convergence speed of each component and yielding a stable and physi-
cally consistent optimization.

Figure 7: Illustration of the progressive training schedule on the bunny scene from the SSS-GS
synthetic dataset (Dihlmann et al., 2025). The model is trained for a total of 60K iterations.
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Figure 8: Qualitative comparison of relighting results on novel test-time lighting from synthetic
datasets provided by GS3 (Bi et al., 2024). Note that the rendered view of RNG’s results on the
Drums and Lego scenes are obtained using their official code trained using a set of white-background
images.
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B TECHNICAL DETAILS

Diffuse Term. We adopt a Lambertian BRDF to model the diffuse component, assuming view-
independent cosine-weighted reflection:

fd = max(0,n · ωi), (9)

where n is the surface normal and ωi is the incident light direction. This simple formulation stabi-
lizes the reconstruction of low-frequency reflectance and provides a physically interpretable baseline
for shading.

Specular Term. The specular component is modeled as a Fresnel factor multiplied by an
anisotropic spherical Gaussian (ASG) reflectance function:

fs = F (ωo,h) ·DASG(h), (10)

where h is the half-vector between light and view directions, and F (ωo,h) denotes the Fresnel
reflectance term, approximated with Schlick’s formulation (Schlick, 1994).

The ASG reflectance function is expressed as a weighted sum of N global ASG bases:

DASG(h) =

N∑
j=1

Gj(h) · αj , (11)

where each basis Gj takes the geometric form (Xu et al., 2013):

Gj(h) = exp
(
−λj(h · xj)

2 − µj(h · yj)
2
)
, (12)

with (xj ,yj) defining the local anisotropy axes. By leveraging a compact set of global ASG bases
with learnable weights αj , we achieve expressive, view-dependent reflections without the need for
per-Gaussian specular storage, maintaining efficiency while preserving rendering fidelity.

Table 3: Quantitative comparison with SSS-GS (Dihlmann et al., 2025) and KiloOSF (Yu et al.,
2022) on the synthetic datasets provided by SSS-GS, trained for 60K iterations. The best and second-
best results (based on PSNR) are highlighted in red and orange , respectively.

Method
Dataset Bunny Candle Dragon Soap Statue Average

Train Test Train Test Train Test Train Test Train Test Train Test
PSNR ↑

KiloOSF - - - - - - - - - - - 25.91± 1.88
SSS-GS - - - - - - - - - - - 35.01± 1.01
Ours (w/o Opt) 40.7672 37.2270 40.0682 38.3662 39.3646 36.6325 45.1439 40.4385 38.1997 34.5404 40.7087 37.4409
Ours (w/ Opt) 40.8704 37.2960 43.2426 41.1038 40.8462 37.3363 45.2659 40.6914 39.1271 35.3434 41.8705 38.3542

SSIM ↑
KiloOSF - - - - - - - - - - - 0.93± 0.02
SSS-GS - - - - - - - - - - - 0.972± 0.01
Ours (w/o Opt) 0.9922 0.9859 0.9910 0.9875 0.9874 0.9789 0.9950 0.9908 0.9879 0.9782 0.9907 0.9843
Ours (w/ Opt) 0.9920 0.9861 0.9947 0.9921 0.9900 0.9812 0.9951 0.9912 0.9901 0.9812 0.9924 0.9863

LPIPS ↓
KiloOSF - - - - - - - - - - - 0.83± 0.09
SSS-GS - - - - - - - - - - - 0.040± 0.01
Ours (w/o Opt) 0.0113 0.0179 0.0134 0.0172 0.0157 0.0240 0.0060 0.0104 0.0153 0.0235 0.0123 0.0186
Ours (w/ Opt) 0.0111 0.0173 0.0072 0.0099 0.0121 0.0209 0.0056 0.0099 0.0135 0.0212 0.0099 0.0158

C ADDITIONAL RESULTS ON THE SYNTHETIC DATASET

GS3 Synthetic Dataset. We compare our method against four representative baselines: the orig-
inal 3D Gaussian Splatting (Kerbl et al., 2023), GI-GS (Chen et al., 2024), GS3 (Bi et al., 2024),
and RNG (Fan et al., 2025). These methods are evaluated on reconstruction of training views from
the synthetic datasets released by GS3, which contain diverse reflectance properties and serve as a
comprehensive benchmark for relightable rendering. Quantitative results are reported in Tab. 1b of
the main paper, and qualitative comparisons are shown in Fig. 8. We additionally compare against
several representative relighting baselines, as presented in Appendix F.

To ensure a fair comparison, all methods were trained for 100K iterations on the same training sets,
followed by rendering on both the training and test splits. Reconstruction quality is evaluated on the
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Figure 9: Qualitative comparison on synthetic datasets from SSS-GS (Dihlmann et al., 2025). The
left column shows reconstruction results on training views, while the right column presents re-
lighting results on novel test-time lighting. The best and second-best results (based on PSNR) are
highlighted in red and orange , respectively.

training set, while relighting performance is assessed on the test set, which contains unseen lighting
conditions. Our method achieves superior reconstruction of specular highlights across most scenes,
such as Drums and Hotdog, and demonstrates more accurate shadow reconstruction in complex
cases like FurBall.

Additionally, we observed that GS3 occasionally produces shadow artifacts at certain view-
points—especially in scenes like FurBall—and we intentionally avoided including such anomalous
views in the comparison to maintain fairness.

Since the GS3 synthetic datasets contain limited subsurface scattering effects, we further validate the
effectiveness of our model on the recently released synthetic dataset from SSS-GS, which features
more prominent subsurface scattering phenomena.

SSS-GS Synthetic Dataset. We further evaluate our method on the recently released synthetic
dataset from SSS-GS (Dihlmann et al., 2025). While both scale-down and full-resolution versions of
the synthetic dataset exist, only the scale-down version (500 images per split at 256×256 resolution)
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Figure 10: Qualitative relighting results on both real and synthetic datasets. Each scene is rendered
from the same camera viewpoint under six novel lighting conditions.

is publicly available. In contrast, the real datasets are currently released only in full resolution
(13,193 images per split at 800×649). Due to the limited time, we conducted our experiments only
on the publicly available synthetic subset. This includes five scenes: bunny, candle, dragon, soap,
and statue.

Following the experimental setup in the SSS-GS paper (Dihlmann et al., 2025), our method was
trained for 60K iterations and rendered on a black background to ensure a fair comparison. We
compare our method against SSS-GS and KiloOSF (Yu et al., 2022) using the quantitative results
reported in the SSS-GS paper. Quantitative results are summarized in Tab. 1c, which reports overall
metrics including average reconstruction quality and training cost. Per-scene quantitative results are
further detailed in Tab. 3, allowing a finer-grained comparison across individual scenes. Qualitative
comparisons are provided in Fig. 9.

We include two variants of our method in this comparison: Ours (w/o Opt) refers to our approach
without camera and lighting optimization, while Ours (w/ Opt) includes joint optimization of both
camera poses and light directions. This setting was briefly introduced in Sec. 4.5 of the main paper,
where we progressively refine camera poses and lighting positions during training. The inclusion
of camera and lighting optimization (w/ Opt) leads to noticeable improvements in both camera and
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light estimates, resulting in an average increase of approximately 1dB in PSNR on both training and
test sets. Despite the input images being downscaled to 256×256, subtle lighting differences remain
discernible, particularly in the relighting results on test views of scenes such as bunny and dragon
(right columns).

D ANALYSIS OF RELIGHTING

To complement the OLAT test set, which provides ground-truth images for quantitative evaluation,
we construct a validation setup for relighting with synthetic light–camera trajectories stored in JSON
format. In this setting, each scene is illuminated by a single point light source, and the incident
light direction is derived from the relative position between the light source and the center of each
Gaussian, ensuring shading consistency at the Gaussian level. Unlike the test set, the validation
setup does not include ground-truth images and is instead used to assess generalization under novel
light and view configurations. Specifically, the light source is placed on a circular path around the
object, sweeping 360◦ in azimuth with a step of 2.4◦. Next, the camera is rotated by 180◦ to the
back side of the object with a step of 2◦, after which the light completes another full 360◦ sweep
around the back view. Finally, the camera is rotated 180◦ back to the original frontal view.

This configuration provides dense sampling of both lighting and viewing conditions, enabling a
comprehensive assessment of relighting fidelity. We perform relighting under this setup for both real
and synthetic datasets (see Fig. 10). The results demonstrate that our method maintains consistency
across varying illumination while faithfully preserving view-dependent effects.

Figure 11: Qualitative relighting comparison on the Translucent scene. Each row shows renderings
from the same camera viewpoint under four novel lighting conditions. Our method is compared
against RNG (Fan et al., 2025) and GS3 (Bi et al., 2024), demonstrating superior fidelity in repro-
ducing light–material interactions.
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Furthermore, we compare relighting results on the Translucent scene with two OLAT-based Gaus-
sian relighting methods, RNG (Fan et al., 2025) and GS3 (Bi et al., 2024), as shown in Fig. 11. The
results demonstrate the superior relighting quality of our method, particularly in handling complex
light–material interactions. For additional qualitative relighting results, please refer to the supple-
mentary video.

In summary, our relighting analysis not only verifies the robustness of our approach under diverse
lighting and viewing conditions, but also lays a fundamental basis for future research on control-
lable relighting, with broad applications in appearance editing, material-aware reconstruction, and
immersive content creation.

Table 4: Ablation study results on both real and synthetic datasets. The best/second-best results are
colored in red / orange .

Dataset NRHints GS3 SSS-GS Average
Scenes Pixiu Fish Translucent FurBall Lego Hotdog Bunny Dragon

PSNR ↑

A: Diff Train 20.2869 23.7003 16.6152 18.5678 20.6157 18.4717 21.3548 27.7851 20.9247
Test 20.1878 24.6146 15.3146 17.4010 17.6430 16.4279 21.3013 27.7071 20.0747

B: D + S Train 20.7321 24.8949 16.6980 18.3871 20.6891 18.5180 21.4677 27.9589 21.1682
Test 20.5692 25.3627 15.3200 17.1781 17.6290 16.4429 21.2236 27.6713 20.1746

C: D + S + SSS Train 25.1545 24.8573 26.4267 18.3845 25.6734 18.4628 22.7074 28.8883 23.8194
Test 24.8100 25.3275 25.6081 17.1655 22.8370 16.3730 22.3572 28.5486 22.8784

D: Full (Ours) Train 33.6065 32.0748 32.6058 35.4793 31.1434 32.4901 40.7672 39.3646 34.6915
Test 31.1213 31.1646 32.3919 35.1639 30.4664 32.1330 37.2270 36.6325 33.2876

E: Full - S Train 32.3487 28.0442 30.9386 33.7976 30.0839 30.0792 34.8697 36.3361 32.0623
Test 30.5952 28.2837 30.6761 34.0481 29.2294 30.4379 33.9633 35.8654 31.6374

F: Full - SSS Train 31.5332 31.9130 29.8005 32.6455 30.0656 31.5471 35.7335 37.5666 32.6006
Test 30.4095 31.1763 30.6253 33.8019 29.0048 32.0991 33.6715 35.9968 32.0982

H: Joint Train 32.5452 31.4431 29.3508 32.5538 29.8266 30.5236 34.0744 37.0531 32.1713
Test 31.0880 30.4943 30.6756 33.6832 29.1154 31.7083 31.7589 35.2621 31.7232

I: Prog. Phys (Ours) Train 33.6065 32.0748 32.6058 35.4793 31.1434 32.4901 40.7672 39.3646 34.6915
Test 31.1213 31.1646 32.3919 35.1639 30.4664 32.1330 37.2270 36.6325 33.2876

J: Prog. NonPhys Train 32.5606 31.3321 29.6999 32.8201 30.7004 30.9712 35.9882 37.6112 32.7105
Test 31.0973 30.2406 30.5955 33.9654 29.4718 31.2575 34.0090 36.0222 32.0824

K: Prog. Merge Train 33.3438 32.0247 31.7351 32.6704 30.2933 31.4903 39.1104 37.5251 33.5241
Test 31.0486 31.2827 31.8883 33.9799 29.2607 32.0399 36.6183 35.8016 32.7400

Figure 12: Visualization of reconstructed components under different reflectance decompositions
and training schedules on the Translucent scene from the GS3 synthetic dataset. Top: six reflectance
compositions (Comp. A-F); Bottom: four training schedules (Sched. H-K).
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E ADDITIONAL ABLATION STUDY

Reflectance Components and Training Schedule. In addition to the Pixiu example presented in
the main paper (Fig. 5 and Tab. 2), we provide expanded ablation results across more real and
synthetic scenes to illustrate the generality of our observations. For the reflectance components,
we report per-scene comparisons for diffuse, specular, subsurface scattering (SSS), and shadow
terms, highlighting consistent trends in directional visibility, highlight formation, and translucent
appearance. We also include additional per-scene evaluations, following our progressive optimiza-
tion strategy, for the training schedule. The supplementary Tab. 4 and visualizations Fig.12 confirm
that the behaviors observed in the main paper hold robustly across diverse materials and lighting
conditions.

Table 5: Quantitative comparison when applying the shadow term to the SSS component.

Dataset NRHints GS3 SSS-GS Average
Scenes Pixiu Fish FurScene Translucent FurBall Lego Hotdog Bunny Dragon

PSNR ↑

Shadow-on-SSS Train 32.1850 31.7531 31.6750 30.8066 35.4219 31.1002 32.1094 35.9068 37.3346 33.1436
Test 30.9756 31.1206 30.6575 30.0740 34.9420 30.3487 31.5272 33.6508 35.8476 32.1271

Ours Train 33.6065 32.0748 31.7846 32.6058 35.4793 31.1434 32.4901 40.7672 39.3646 34.3685
Test 31.1213 31.1646 30.7349 32.3919 35.1639 30.4664 32.1330 37.2270 36.6325 33.0039

SSIM ↑

Shadow-on-SSS Train 0.9484 0.9337 0.9570 0.9761 0.9768 0.9701 0.9755 0.9841 0.9815 0.9670
Test 0.9432 0.9252 0.9510 0.9751 0.9732 0.9562 0.9721 0.9762 0.9760 0.9609

Ours Train 0.9524 0.9363 0.9576 0.9835 0.9776 0.9706 0.9776 0.9922 0.9874 0.9705
Test 0.9452 0.9260 0.9518 0.9823 0.9733 0.9570 0.9743 0.9859 0.9789 0.9638

LPIPS ↓

Shadow-on-SSS Train 0.0797 0.0811 0.0695 0.0278 0.0502 0.0336 0.0305 0.0285 0.0236 0.0472
Test 0.0825 0.0880 0.0726 0.0277 0.0450 0.0424 0.0327 0.0360 0.0285 0.0506

Ours Train 0.0751 0.0779 0.0690 0.0201 0.0482 0.0331 0.0293 0.0113 0.0157 0.0422
Test 0.0791 0.0855 0.0724 0.0200 0.0442 0.0419 0.0326 0.0179 0.0240 0.0464

Figure 13: Qualitative comparison for the Shadow–SSS interaction ablation study. Applying the
shadow term to the SSS component leads to over-darkened scattering, loss of back-lit translucency,
and reduced soft shading. Our formulation preserves translucent appearance while maintaining
consistent shadow behavior.
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Shadow–SSS Interaction. To examine how the shadow term S(x) interacts with subsurface scat-
tering (SSS), we evaluate an alternative shading variant in which the shadow term is also applied to
the SSS component. For clarity, we restate the shading model used in the main paper (Eq. 3):

Ours: (cdfd + csfs) · S(x) + csssfsss (13)
where the shadow term modulates only the diffuse and specular contributions. In the ablation, we
instead apply the shadow term to all components, resulting in

Shadow-on-SSS: (cdfd + csfs + csssfsss) · S(x) (14)

This design highlights the distinction between surface occlusion and volumetric diffusion. The
SSS module is directly supervised by multi-view images, which already account for visibility and
attenuation effects. Introducing S(x) to the SSS component results in a secondary attenuation that
reduces back-lit translucency and causes overly dark scattering. Our ablation study confirms that
this approach leads to lower reconstruction quality across translucent, semi-translucent, and opaque
scenes.

Tab. 5 reports per-scene metrics. The “Shadow-on-SSS” variant performs worse in all categories,
with the largest differences observed in scenes that contain strong subsurface transport. Fig. 13
shows representative qualitative results that demonstrate the loss of translucency and soft scattering
when the shadow term is applied to the SSS component.

F ADDITIONAL RELIGHTING BASELINES

This section provides additional comparisons on the Synthetic OLAT dataset and further clarifies
the modeling differences among recent relighting approaches. Existing relighting methods based on
NeRF or 3D Gaussian Splatting generally differ in how illumination is parameterized and recon-
structed, which directly determines their behavior under point-light relighting.

Relighting under unknown illumination. The first class of datasets contains scenes captured
under unknown and often complex illumination, such as outdoor environments or indoor scenes
dominated by global illumination. Methods in this category, including TensoIR (Jin et al., 2023),
R3DG (Gao et al., 2024), IRGS (Gu et al., 2025), and GI-GS (Chen et al., 2024), must jointly in-
fer surface reflectance, geometry, and an environment map from the observed radiance. Because
the incoming light distribution is not provided, these approaches rely on explicit or residual global-
illumination modeling (e.g., multi-bounce shading, occlusion volumes, or deferred visibility terms)
to explain indirect energy that cannot be deduced from direct lighting alone. The recovered illumi-
nation is typically represented as a low-frequency environment map, making these methods effective
for ambient relighting but fundamentally limited in reproducing the high-frequency, spatially local-
ized behavior characteristic of point-light transport.

Relighting under known illumination. The second class of datasets follows a controlled One-
Light-at-a-Time (OLAT) protocol, where each training view is illuminated by a known single point
light with calibrated position. Approaches such as GS3 (Bi et al., 2024), RNG (Fan et al., 2025),
and ours leverage this setting, which provides explicit per-light supervision and cleanly separates
geometry, BRDF, and illumination. Unlike unknown-light datasets, OLAT observations directly
reveal high-frequency shading cues, including directional visibility, sharp-to-soft shadow transitions,
and localized subsurface transport, so explicit global-illumination terms become unnecessary. In
this setting, introducing residual multi-bounce components often leads to ambiguity by entangling
reflectance and transport. Instead, OLAT-oriented methods focus on accurately modeling direct
point-light transport; our approach follows this paradigm using a physically structured Gaussian-
domain shading model that captures both fine-scale direct effects and the small, naturally occurring
low-frequency residual energy in controlled environments.

Expanded baselines. To broaden the relighting comparison, we additionally evaluate TensoIR
and R3DG on the GS3 Synthetic OLAT dataset. Both methods are re-trained using their official
implementations. Since these approaches rely on environment-map estimation, they must explain
point-light observations using low-frequency illumination representations. This mismatch intro-
duces ambiguity and typically manifests as blurred shadows, reduced directional contrast, and atten-
uated high-frequency shading. Quantitative results in Tab. 1b and Tab. 6 show that OLAT-targeted
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methods consistently outperform unknown-lighting relighting models, and our method achieves the
highest accuracy across all scenes and metrics.

Table 6: Quantitative comparison results with expanded relighting baselines: TensoIR and R3DG.
The best results are colored in red .

Method
Dataset Translucent AnisoMetal Drums FurBall Hotdog Lego Average

PSNR ↑

TensoIR Train 16.9800 18.1800 26.4400 20.1600 17.1900 17.5200 19.4117
Test 15.9997 16.8545 24.8974 20.0509 17.1500 17.0317 18.6640

R3DG Train 17.1815 18.1650 27.3024 21.6486 19.5616 19.4608 20.5533
Test 16.4664 17.1060 25.0378 20.1443 17.1896 16.2879 18.7053

Ours Train 32.6058 31.1077 34.2448 35.4793 32.4901 31.1434 32.8452
Test 32.3919 30.0448 33.5514 35.1639 32.1330 30.4664 32.2919

These expanded comparisons demonstrate that relighting methods designed for unknown or
environment-map illumination do not perform well in the point-light OLAT scenario, where high-
frequency directional cues are essential. In contrast, known-light approaches—particularly those
that incorporate physically structured transport modeling—achieve significantly more accurate and
consistent results. Our method attains state-of-the-art performance on the GS3 Synthetic OLAT
dataset.

G ANALYSIS OF SHADOW

Shadow Pipeline. This section analyzes the shadow term and visualizes the behavior of our visi-
bility formulation. Although a point light theoretically produces a sharp umbra boundary, our con-
tinuous transmittance model yields smooth and geometry-aware transitions. The per-ray transmit-
tance vi accumulates attenuation along each shadow ray, and its spatial variation across neighboring
rays naturally induces soft penumbra regions. Aggregating these ray-wise values into a per-Gaussian
coarse visibility v̂g further smooths local discontinuities and captures how each Gaussian contributes
to shadowing. The refined shadow S(x) then maps these visibility cues to pixel-space shadow inten-
sities, suppressing residual artifacts and producing stable, physically interpretable soft shadows. As
shown in Fig. 3, the progression from vi to v̂g and finally to S(x) illustrates how continuous visibility
modeling produces coherent, geometry-consistent soft shadows under point-light illumination.

Comparison with Screen-Space Shadow Baselines. We additionally compare our formulation
with screen-space opacity-accumulation strategies used in methods such as GS3 (Bi et al., 2024)
and RNG (Fan et al., 2025), as illustrated in Fig. 14. Since these approaches compute shadowing
after projection, they are highly sensitive to depth ordering and often exhibit unstable or overly
sharp shadow boundaries, particularly around thin structures or regions with multi-layer occlusion.
Screen-space accumulation also struggles to maintain consistency under viewpoint changes, as small
perturbations in projected splat order can produce flickering or discontinuities.

In contrast, our volumetric visibility formulation integrates attenuation along the light ray in 3D, in-
dependent of screen-space ordering. This yields smoother and more geometry-consistent transitions,
stable penumbra behavior, and improved handling of dense or overlapping Gaussians and concave
geometry. These comparisons highlight the advantages of continuous transmittance and emphasize
the importance of modeling visibility at both the ray and Gaussian levels rather than relying solely
on post-projection image-space accumulation.
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Figure 14: Comparison with screen-space shadow baselines. Top row: reference renderings. Second
row: shadows produced by our method. Third and fourth rows: shadows from GS3 (Bi et al., 2024)
and RNG (Fan et al., 2025), which both rely on screen-space opacity accumulation.

H LLM USAGE

Throughout this study, we used LLMs only to assist with writing—correcting grammar and refining
phrasing to improve clarity.

We did not use LLMs to search for or identify related works; all literature was found by the authors.

LLMs did not contribute to the intellectual development of the research.
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