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Abstract
Scanpath generation in 360◦ images aims to model the realistic
trajectories of gaze points that viewers follow when exploring
panoramic environments. Existing methods for scanpath genera-
tion suffer from various limitations, including a lack of global atten-
tion to panoramic environments, insufficient diversity in generated
scanpaths, and inadequate consideration of the temporal sequence
of gaze points. To address these challenges, we propose a novel
approach, named ScanTD, which employs a conditional Diffusion
Model-based method to generate multiple scanpaths. Notably, a
transformer-based time-series (TTS) module with a novel attention
mechanism is integrated into ScanTD to capture the temporal de-
pendency of gaze points effectively. Additionally, ScanTD utilizes a
Vision Transformer-based method for image feature extraction, en-
abling better learning of scene semantic information. Experimental
results demonstrate that our approach outperforms state-of-the-art
methods across three datasets. We further demonstrate its general-
izability by applying it to the 360◦ saliency detection task.
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• Computing methodologies → Activity recognition and un-
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1 Introduction
In the rapidly evolving field of virtual reality (VR), understanding
the visual attention of users is critical for creating immersive and
interactive experiences. It offers meaningful insights into scene
rendering, data transmission, and compression [11, 35] for develop-
ing better VR applications. However, recruiting actual participants
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Figure 1: Existing 360◦ scanpath prediction methods

and obtaining real experimental data using eye-tracking devices
is time-consuming and complex. Therefore, it would significantly
benefit this research field to develop a method capable of modeling
human visual attention behavior and generating realistic visual at-
tention patterns without the necessity for real-world experiments.
360◦ images are experiencing a surge in popularity due to their
ability to deliver highly immersive viewing experiences. Gener-
ally, the study of human visual attention on 360◦ images has two
research focuses: saliency maps and gaze point trajectories (scan-
paths). Unlike saliency maps, which only present static results, gaze
point movement in a scanpath is a dynamic process [5]. Recent
studies have shown that the dynamics of gaze points can reflect
various characteristics, such as the attractiveness and quality of
areas viewed at different time stamps [38, 41, 43].

Scanpath generation aims to accurately model the trajectories of
viewers’ gaze points from two perspectives: the spatial positions of
gaze points and their temporal order. The recent advances in deep
learning techniques have enabled scanpath prediction in traditional
2D images [24, 25]. However, modeling scanpaths in 360◦ images
presents a more challenging task due to the significant differences
from 2D planar images. In 360◦ environments, observers engage not
only in scanning the image with their gazes but also in changing
their viewports by turning their heads or bodies [43]. This also
necessitates better global scene feature extraction in the larger
space offered by 360◦ images. Additionally, most studies in scanpath
modeling do not fully address the temporal dynamics of gaze points,
which are crucial for accurately simulating realistic gaze point
trajectories [5]. Capturing this temporal dependency among gaze
points is particularly vital in interactive applications such as VR
training simulation and interactive storytelling.
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Existing research and human attention datasets also indicate
that, while observers may share similar gaze patterns for the same
scene, there remains significant diversity in gaze behavior during
free-viewing [32, 35, 42]. Therefore, generating multiple scanpaths
is critical for real-world applications. Researchers [2, 27] have em-
ployed Generative Adversarial Networks (GANs) to generate di-
verse scanpaths (see Fig. 1). However, GAN-based methods suffer
from instability issues, such as mode collapse. An alternative ap-
proach is Markov-based methods [12, 37] that use a Markov Chain
to predict scanpaths (see Fig. 1), but they struggle with handling
long-range dependencies due to their reliance on the immediate
last state, leading to the loss of relevant information over time.

In this research, we propose a novel approach, ScanTD, to ad-
dress the above challenges in 360◦ scanpath prediction. Based on
recent research that confirmed the better capability of the Diffusion
Model in learning to generate diverse sequential outputs [16, 21],
we incorporate the Diffusion Model into the scanpath prediction
task. We employ a conditional Diffusion Model that uses the deep
features of the given 360◦ image as its condition and effectively
learns the distribution of scanpath data via a gradual denoising pro-
cedure. Previous studies model the temporal domain information
based on Recurrent Neural Networks (RNNs) [19, 30] or Markov
Models [37], which struggle to cope with increasing lengths of
time series and suffer from low computational efficiency. Recently,
Transformer-based time-series processing models [48] have demon-
strated superior performance in capturing long-range temporal de-
pendencies, achieving higher efficiency than RNN-based methods.
In our conditional diffusion model, we adopt a Transformer-based
time-series (TTS) module in the denoising procedure to capture the
temporal information across time-ordered gaze points.

When extracting 360◦ image features for our diffusion model, we
take into account the spherical nature of 360◦ images to address the
typical distortions [13] to enhance the scanpath learning process.
Most existing scanpath modeling methods for 360◦ images rely on
normal 2D CNNs, which often struggle to capture distant spatial
relationships between content elements [1, 27, 37]. Instead, we
utilize Vision Transformer [17], incorporated with a Spherical CNN
[9], to learn the global scene features in 360◦ images. This use of
global attention significantly enhances the accuracy and realism of
scanpath modeling in 360◦ images.

Our main contributions include: (1) We propose a novel 360◦
scanpath prediction method based on time-series diffusion, ScanTD,
which boosts the performance of scanpath generation in 360◦ im-
ages. (2) We develop a transformer-based time-series (TTS) module
with a novel temporal attention mechanism to better capture the dy-
namic temporal information across time-ordered gaze points. This
modification significantly improves the accuracy of both the spatial
positions and the temporal order of the generated gaze points. (3)
We integrate Spherical CNNs into Vision Transformer for better
global scene feature extraction in 360◦ images.

2 Related Works
2.1 Scanpath Modeling on 2D/360◦ Images
Scanpath prediction and generation have been explored in tradi-
tional 2D images formany years and have achieved notable progress.
Scanpaths differ from saliency maps, in that they are time-aware.

These time-aware models [5] highlight the limitations of static
saliency maps by underscoring the importance of incorporating
temporal dynamics into the modeling of eye movement trajectories.
In recent years, the application of Deep Learning and Probabilistic
Generative Models [14, 22, 25] has proven the efficacy of neural
networks in recognizing and understanding the complex patterns of
human visual attention. However, the performance of these models
can be sensitive to certain parameters, such as the number of Gauss-
ian components, which limits their ability to handle complex scenes.
Markov chain-based methods [12] for gaze behavior modeling pro-
vide insights into integrating various influences on gaze behavior,
yet they fall short in efficiently capturing the temporal dependen-
cies in gaze points and shifts in visual attention. Beyond scanpath
modeling for free-viewing situations, several studies [8, 45] have
also explored goal-directed human visual attention modeling.

For 360◦ images, several attempts have been made to model
saliency maps [6, 28, 29, 35, 36], but scanpath modeling has re-
ceived less attention. Initially, several scanpath prediction models
based on saliency maps were developed, but their performance
largely depends on the accuracy of the saliency map predictions
[1, 3, 50, 51] (see Fig. 1). While some methods have focused on
improving saliency prediction models and sampling strategies, con-
structing effective sampling strategies for time-dependent visual
behavior remains challenging, as evidenced by the unstable results
from models like SaltiNet [1]. Assens et al. [2], have attempted
to adapt 2D models for 360◦ images but have encountered diffi-
culties in accurately replicating ground truth scanpaths behaviors.
Approaches using generative models, such as GANs, all struggle
with training stability [2, 16]. The recent ScanDMM model [37],
which simulates visual working memory through a Markov chain,
shows promise in predicting realistic scanpaths. However, it strug-
gles with the loss of state information over longer timescales, a
limitation inherent to the Markov chain model itself. Furthermore,
while ScanDMM [37] offers a probabilistic generative approach to
capture gaze behavior diversity, it is constrained by the Markov
assumption that future states depend solely on the current state,
potentially limiting scanpath diversity due to this sequential de-
pendence. This approach effectively models individual scanpaths
but falls short in capturing the diversity of scanpaths across differ-
ent viewers. In this context, our model, ScanTD, allows for more
flexible modeling of temporal dependencies and panoramic scene
semantic features, generating more diverse and realistic scanpaths.
It is worth noting that all these studies use CNN-based methods for
scene feature extraction in 360◦ environments, which are limited by
their local perception. Moreover, employing CNN-based methods
without pre-trained models for scene feature extraction in 360◦ im-
ages may result in poor generalization and challenges in capturing
the complex spatial relationships inherent in panoramic content. In
contrast, pre-trained models like the Vision Transformer (ViT) [17]
offer robustness and enhanced generalization across diverse visual
content, potentially improving scanpaths generation accuracy.

2.2 Diffusion Model
Diffusion models have shown success in various visual applications,
including image production[33, 49]and audio synthesis[26]. These
models consist of two processes: forward and reverse. The forward
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process adds Gaussian noise to the original data distribution 𝑥0 ∼
𝑞(𝑥0), generating latent variables 𝑥1 through 𝑥𝑇 :

𝑞(𝑥𝑡 | 𝑥𝑡−1) = N(𝑥𝑡 ;
√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ) (1)

The reverse process aims to reconstruct the original data using a
learned neural network:

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) (2)

Here, 𝛽𝑡 ∈ (0, 1) is the noise variance at time 𝑡 , and 𝜇𝜃 and Σ𝜃
are learned parameters. Diffusion probabilistic models excel in
matching complex data distributions and managing long-range
dependencies by reversing a gradual, multi-step noising process
[21]. Dhariwal et al. [16] highlight their advantages over GANs
in synthesizing high-quality images, with a structured generative
process providing greater stability and robustness. Additionally,
diffusion models outperform GANs in covering distribution modes,
suggesting superior capability in handling data variability [31]. For
scanpath modeling in 360◦ images, the unique demands align well
with the strengths of diffusion models, enabling them to navigate
complex spatial relationships and temporal sequences effectively.
Similar to conditional-VAE and conditional-GAN, diffusion models
can treat the encoded latent input, 𝑋 , as a condition [4, 47]. This
approach extends to time-series prediction and audio waveform
generation in models like CSDI [39] and WaveGard [7]. Tradition-
ally, diffusion models for image-to-image processing use a U-net
architecture [34]. However, for sequence-to-sequence tasks like text
generation, Transformer-based methods have been employed as
alternatives [20]. For instance, CSDI [39] uses a Transformer-based
model with two-dimensional attention mechanisms for capturing
temporal and feature dependencies in multivariate time-series data.
Inspired by these advances, our proposal, ScanTD, leverages scene
features from 360◦ images as conditions to generate varied scan-
paths. Specifically, we introduce a transformer-based time-series
module with a novel multi-attention mechanism, replacing the U-
net to learn the temporal order of gaze points more effectively.
This innovation allows ScanTD to better capture the temporal and
feature dependencies in multivariate time-series data, making it
particularly suited for scanpath modeling.

3 Method
Problem statement. In a 360◦ environment, viewers’ gaze point
movements can be considered as a dynamic, temporally ordered
process. A human scanpath can be defined as a time series of gaze
points 𝑋1:𝑇 = (𝑋1, 𝑋2, . . . , 𝑋𝑇 ) ∈ R3×𝑇 , where 𝑋𝑡 is the 3D coordi-
nate (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) of a gaze point. Specifically, given a 360◦ image, the
scanpath prediction method aims to generate realistic scanpaths
𝑋1:𝑇 . For better real-world application and to simulate different
viewers, the method needs to efficiently generate multiple scan-
paths 𝑋1, 𝑋2 .....𝑋𝑚 for one given image, ensuring the diversity of
the generation results [35].

3.1 Overview
As illustrated in Fig. 2, ScanTD comprises two networks. The first
network is used for scene feature extraction from 360◦ images,
using a Vision Transformer-based method. The second network is a
diffusion model-based network that is conditioned on the extracted
scene features to generate various scanpaths. Specially, it involves

a Transformer-based time-series (TTS) module when denoising to
deal with the temporal sequence data.
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Feature Extraction ViT-based Network (FV-Net). In the FV-Net,
we employ Vision Transformer (ViT) for its superior global percep-
tion capabilities in 360-degree scene feature extraction. However,
given that ViT models are originally designed for conventional 2D
images, their performance is constrained by the inherent distor-
tions in 360◦ images. To address this limitation, we substitute the
standard 2D patch embedding in ViT with Spherical CNN [10]. This
adaptation significantly enhances the extraction of the features of
the omnidirectional visual content in the input 360◦ image.
Scanpath Generation Diffusion Model-based Network (SD-
Net). In the SD-Net, we introduce a novel conditional diffusion
model to generate diverse scanpaths, where the extracted scene
features are used as the condition. The SD-Net facilitates a more
context-aware generation of scanpaths. More specifically, to effec-
tively cope with the dynamic temporal sequence of gaze points in
scanpaths, we replace the conventional U-net in the original Diffu-
sion Model with a Transformer-based time-series (TTS) module for
modeling the diffusion process on the sequential data.

3.2 FV-Net
Given a 360◦ image, the output of this stage is an image feature
embedding with a shape of 𝐵 × 20 × 196 (𝐵 is the batch size). Dif-
ferent from traditional CNN-based methods, ViT is a Transformer-
based architecture, devoid of convolutions to process flattened im-
age patches, enabling it to effectively capture long-range depen-
dencies between different regions of an image. This convolution-
free approach of the ViT not only challenges the prevailing CNN
paradigms but also sets new benchmarks in large-scale image clas-
sification tasks, achieving state-of-the-art performance on datasets
like ImageNet [15]. The shape of vanilla ViT [17] is 𝐵 × 197 × 768,
and we remove the last layer used for image classification and use
the remaining ones with a shape of 𝐵 × 196 × 768 to output the
scene features of the image.

Traditional 2D CNNs can not handle the distortion introduced
by the equirectangular projection-based representation of 360◦ im-
ages. Therefore, we replace 2D CNNs with Spherical Convolutions
[10] that have been shown to perform better for embedding equire-
tangular content in the ViT model. Spherical convolutions are a
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type of dilated convolution where the relationships between image
elements are not established in 2D image space, but in a gnomonic,
non-distorted spherical space. These spherical convolutions can
represent kernels as patches tangent to a sphere where the 360◦ is
reprojected, and therefore allow the network to learn spatial rela-
tions of 360◦ content, such as longitudinal continuities or spherical
distortions. The core of Spherical Convolutions is adapting convo-
lutional neural networks for 360◦ image data by employing filter
kernels that have a perception field covering the pixel positions
aligned with the spherical nature of the images, effectively handling
the distortions typical in 360◦ data [10]. In a traditional ViT model,
a 2D image 𝐼 is divided into 𝑁 2D image patches 𝑃1, 𝑃2, . . . , 𝑃𝑁 .
Each image patch 𝑃𝑖 is transformed into a one-dimensional vector
𝑣𝑖 through a patch embedding layer 𝐸: 𝑣𝑖 = 𝐸 (𝑃𝑖 ) . Then, the vectors
𝑣1, 𝑣2, . . . , 𝑣𝑁 are fed into the Transformer encoder. In our modified
approach, we replace the 2D patch embedding with spherical CNNs
to extract features from the input 360◦ image, preserving its spher-
ical properties. These features are then partitioned into patches,
each shaped into a feature vector. The resulting feature vector 𝐹
has a shape of 𝐵 × 196 × 768 and is subsequently fed into the ViT
architecture.

3.3 SD-Net
We use a conditional time-series data diffusion model for learning
to generate scanpaths with better diversity and accuracy based on
the extracted scene features. As shown in Fig. 2, our model learns
to denoise the gaze point sequence to make it progressively closer
to the real data distribution through denoising steps. We use the
scene features as the condition of the corresponding scanpaths
of the same image by concatenating the features and the point
sequence to form the sample space to model by the diffusion model.
Notably, the noise is not added to the conditional scene features in
the diffusion process. A Transformer-based time-series module is
adopted to denoise the scanpath with the given condition, which
enables a better exploration of the temporal dependencies among
gaze points within the same scanpath.

Scene-Conditioned Scanpath Partial Noising
We denote the scene feature of an image as C with a shape of

𝐵 × 20 × 196 and denote the corresponding ground truth scan-
paths as {S𝑝 } = {S1, S2 .....S𝑛} (𝑛 is the number of ground truth
scanpaths) of that image. Each scanpath is a 20 × 3 matrix, rep-
resenting a temporal sequence of 20 gaze points. We use the 3D
coordinates of the point on the unit sphere 𝑥,𝑦, 𝑧 to represent each
point. Our conditional diffusion model learns to model the sample
space where each sample is a combination of the image scene infor-
mation C and one of the ground truth scanpaths S𝑝 , expressed as
z = C⊕S𝑖 = [𝐶, 𝑆𝑝1 , 𝑆

𝑝

2 ...𝑆
𝑝
𝑚], where𝑚 is the point number of a scan-

path, normally set as 20. Note that if an image has 𝑛 ground truth
scanpaths, there will be 𝑛 corresponding samples in the dataset
used for learning. The forward diffusion process is expressed as:

𝑞𝜙 (z𝑡 |z𝑡−1) = N(z𝑡 ;
√︁
1 − 𝛽𝑡 z𝑡−1, 𝛽𝑡 𝐼 ). (3)

Here, 𝛽𝑡 is a small constant that controls the noise level. 𝑡 represent
the state of the variable z during the process. Different from conven-
tional diffusion models that corrupt the whole z𝑡 (both image scene

information C and a ground truth scanpath S𝑝𝑡 ), we only add noises
to the different states of the scanpath to obtain S𝑝,1, S𝑝,2, ..., S𝑝,𝑇 ,
where S𝑝,𝑡 represents the 𝑡-th state of the scanpath S𝑝 during the
partial noising process. The conditional part C remains unchanged
during the forward process, making it a partial noising process.
This modification allows for the generated scanpaths that not only
mimic the variability found in human visual attention but also
are deeply informed by the scene’s content structure. In practical
applications, this translates to the ability to create highly personal-
ized user experiences in VR settings. By understanding the scene
cues that guide visual attention, content creators can design expe-
riences that are both informative and visually captivating, leading
to enhanced engagement and satisfaction.

TTS-based Conditional Denoising
We recover the original scanpath S𝑝 in the reverse process

using a conditional denoising module. Particularly, we utilize a
Transformer-based time-series (TTS) learning module, denoted as
𝑓𝜃 , to learn to reconstruct the original z0 given the conditional part
C that represents the scene’s visual features.

We adopt the TTS module to learn the transition from a later
noised ground truth state S𝑝,𝑡 back to an earlier noised state S𝑝,𝑡−1,
thereby effectively recovering the sequence of gaze points. Our
TTS module comprises eight 2D multi-head self-attention blocks.
As illustrated in Fig. 3, each block integrates a spatial multi-head
attention alongside a temporal multi-head attention, enabling the
extraction of hidden relationships across both temporal and spatial
dimensions. The spatial attention operates on the tensor of each
feature to learn spatial dependencies, whereas the temporal atten-
tion processes the tensor of each timestamp of the gaze points to
discern temporal dependencies. The input embedding with shape
[𝐵, 𝐿,𝐶] (batch size, length, channel number) is initially expanded
in dimension to [𝐵, 𝐿,𝐶, 𝐷] (batch size, length, channel number,
depth). Within each 2D Multi-head Self-attention block, the ex-
panded embedding undergoes a split by channel to facilitate feature
extraction via spatial attention, followed by a sequence split for
temporal feature extraction through temporal attention.

Crucially, for the TTS module, we use a two-dimensional atten-
tion mechanism in each residual layer instead of convolution to
capture spatial and temporal dependencies of multivariate time se-
ries. We employ a spatial Transformer layer and a temporal Trans-
former layer, both as 1-layer Transformer encoders. The spatial
Transformer layer takes the features of each spatial position as
inputs to learn spatial dependencies, whereas the temporal Trans-
former layer processes tensors at each time point to learn temporal
dependencies. This capability is important for real-world applica-
tions, predicting where and when a viewer might look next can
guide the adaptive streaming of high-definition content to just the
right places at the right times.

In the reverse process, we use the TTS module 𝑓𝜃 to estimate the
posterior distribution:

𝑝𝜃 (𝑧0:𝑇 ) := 𝑝 (z𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (z𝑡−1 |z𝑡 , z0), z𝑇 ∼ N(0, I) (4)

𝑝𝜃 (z𝑡−1 |z𝑡 , z0) = N(z𝑡−1; 𝜇𝜃 (z𝑡 , 𝑡 |z0), 𝜎𝜃 (z𝑡 , 𝑡 |z0)I) (5)
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where the 𝜇𝜃 and 𝜎𝜃 represent the parameters for the predicted
mean and standard deviation of 𝑞 (z𝑡 − 1|z𝑡 , z0)) from the forward
nosing process. The condition C is included in z and remains un-
changed. After the conditional denoising process from 𝑡 = 𝑇 to
𝑡 = 0, we generate z0:𝑇 =C ⊕ Ŝ𝑝,0:𝑇 .

During the training process of our TTS-based denoising model,
we optimize the parameters of the TTSmodule by the error between
the generated scanpath states Ŝ1:𝑇 and the ground truth scanpaths
S1:𝑇 . The losses are computed following the original denoising
diffusion model proposed in [21]:

L𝑉𝐿𝐵 = E𝑞 (z1:𝑇 |z0 )

[
log

𝑞(z𝑇 |z0)
𝑝𝜃 (z𝑇 )︸          ︷︷          ︸
𝐿𝑇

+ (6)

𝑇∑︁
𝑡=2

log
𝑞(z𝑡−1 |z0, z𝑡 )
𝑝𝜃 (z𝑡−1 |z𝑡 )︸                      ︷︷                      ︸
𝐿𝑡−1

− log𝑝𝜃 (z0 |z1)︸             ︷︷             ︸
𝐿0

]

The reverse process can be simplified by solving the following
optimization problem:

min
𝜃

LVLB = min
𝜃

[
𝑇∑︁
𝑡=1

∥z0 − 𝑓𝜃 (z𝑡 , 𝑡)∥2
]

→ min
𝜃

[
𝑇∑︁
𝑡=1

∥Ŝ𝑝,0 − 𝑓𝜃 (z𝑡 , 𝑡)∥2
] (7)

where the 𝑓𝜃 (z𝑡 , 𝑡) donates the fractions of reconstructed z0 corre-
sponding to Ŝ𝑝,0.

3.4 Scanpath Generation
To predict scanpaths from a given 360◦ image, FV-Net extract global
scene features C, which serve as the condition for the following SD-
Net. Subsequently, a standard noise N with the shape of (1, 20, 3),
mirroring the shape of ground truth scanpaths, is generated based

on the standard normal distribution. This noise is then concatenated
with the conditionC obtained from the FV-Net as:W = C⊕N. The
concatenated tensor is subsequently fed to SD-Net. Within SD-Net,
the mean and variance of the concatenated tensor W = C ⊕ N are
used to denoise. This denoising process is iterated until a preset
number of noising/denoising cycles are completed, resulting in
the concatenation of the condition and the generated scanpaths:
C⊕Ŝ𝑝 . To ensure that the generated scanpaths exhibit the necessary
diversity reflective of natural human gaze behavior when viewing
images in a 360◦ environment, we utilize different noise samples to
generate scanpaths for the same image.

4 Experiments and Results
4.1 Datasets
We use three 360◦ image datasets: Sitzmann [35], AOI [42], and
Salient360! [32]. Sitzmann [35] comprises 22 360◦ images and 1,980
scanpaths collected from 169 different users. Each scanpath repre-
sents gaze information recorded over 30 seconds at a sampling rate
of 120Hz. To simplify the data, we reduced the sampling frequency
of these scanpaths to 1Hz, yielding 30 data points per scanpath. To
address the limited size of the dataset, we augmented the data by
rotating the 360◦ images longitudinally and making corresponding
adjustments to the scanpaths, thereby creating six distinct versions
for each image. We used 19 of the 22 images for training, and the
remaining three were included in the test set, effectively expanding
our training dataset to 114 images. The AOI dataset [42] comprises
600 high-resolution 360◦ images accompanied by 18,000 scanpaths,
and we randomly select 100 360◦ images for model evaluation. We
use the training set in Salient360! [32], which contains 85 images
and 3,036 scanpaths, for evaluation as well.

4.2 Experimental Setup
Evaluation Metrics. Many metrics have been proposed to quanti-
tatively evaluate the similarity between two disparate scanpaths
[18]. We used three metrics to quantitatively evaluate the perfor-
mance of our ScanTD model: Levenshtein distance (LEV) , Dynamic
TimeWarping (DTW) , and Recurrence measure (REC) [18, 27]. LEV
quantifies the similarity between two strings. In practical applica-
tions, LEV can also be employed to compare ordered sequences. In
our experiment, the scanpath is defined as a series of 3D coordinate
points 𝑋1:𝑇 = (𝑋1, 𝑋2, . . . , 𝑋𝑇 ) ∈ R3×𝑇 . We convert these coordi-
nate points into strings and then use LEV to assess their similarities.
LEV is computed using the dynamic programming formula:

LEV(𝐴, 𝐵) = min
(
LEV(𝐴 − 1, 𝐵) + 1,

LEV(𝐴, 𝐵 − 1) + 1,

LEV(𝐴 − 1, 𝐵 − 1) + 𝛿𝐴[𝐴]≠𝐵 [𝐵 ]
) (8)

where 𝛿 is the Kronecker delta function that equals 0 if𝐴[𝐴] = 𝐵 [𝐵]
and 1 otherwise. DTW is ametric designed to compare the similarity
of different time-series sequences. The gaze points in a scanpath
exhibit temporal order characteristics, and the output coordinate
points typically contain (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ), with each point representing a
time step. Therefore, DTW can be used to measure the ability of
eachmethod in capturing the dynamic temporal order dependencies
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Figure 4: Diverse generation results of ScanTD on three datasets
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Figure 5: Qualitative comparison to different scanpath prediction models on three datasets

of scanpath. It is computed as:

DTW(𝐴, 𝐵) =

√√√ 𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑤 (𝑖, 𝑗) · (dist(𝐴[𝑖], 𝐵 [ 𝑗]))2 (9)

where dist(𝐴[𝑖], 𝐵 [ 𝑗]) is the distance between points𝐴[𝑖] and 𝐵 [ 𝑗],
and𝑤 (𝑖, 𝑗) is a weight function.Recurrence Measure (REC) is nor-
mally used to study the recurrence properties of time series data.
Given a time series 𝐴 with length 𝑛, REC is calculated as the pro-
portion of recurrence points (𝑅) by:

REC(𝐴) = 1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

Θ(𝜀 − ∥𝐴[𝑖] −𝐴[ 𝑗] ∥) (10)

where Θ is the Heaviside step function, 𝜀 is the threshold distance,
and ∥ · ∥ denotes the Euclidean distance. Lower LEV/DTW values
and higher REC values indicate better performance.
Training Details and Inference Time. FV-Net and SD-Net are
trained simultaneously. We implement these two networks by Py-
Torch and train them for 500 epochs. The resolution of training

images is 448×224, and in each training iteration, the batch size is 8.
The parameters of these two networks are both updated using the
Stochastic Gradient Descent optimizer. The initial learning rate for
these two networks is set to 1 × 10−3; the weight decays are both
applied with 5 × 10−5 for regularization. The timestep in SD-Net is
500. It takes 0.28 seconds to generate one scanpath and 4.73minutes
to generate 1000 scanpaths using an NVIDIA RTX 3090 Ti GPU.

4.3 Diversity and Performance Comparison
Diverse Results of ScanTD. As illustrated in Fig. 4, our approach
ScanTD is capable of generating multiple scanpaths for the same
scene, catering to the diversity required in real-world applications.
Moreover, it ensures that the generated scanpaths are plausible and
focus on relevant areas of interest within the scene. The road scene
is from AOI dataset [42], the room scene is from Salient360! dataset
[32], and the study scene is from Sitzmann dataset [35].
Selection of Methods for Comparison. We compare our ap-
proach ScanTD with three state-of-the-art 360◦ scanpath predic-
tion models: SaltiNet [1], ScanGAN360 [27], ScanDMM [37] and
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Table 1: Quantitative comparison of methods on three datasets

Dataset Method LEV ↓ DTW ↓ REC ↑
mean / best mean / best mean / best

Random walk 62.91 / 57.45 3011.78 / 2310.10 1.42 / 2.77
SaltiNet [1] 50.04 / 49.83 2102.70 / 2065.49 1.96 / 2.21
TAHA [44] 51.11 / 49.04 2104.21 / 2072.18 2.13 / 2.52
HAT [46] 48.24 / 47.97 2101.20 / 2045.75 2.74 / 2.93

Sitzmann[35] ScanGAN360 [27] 45.16 / 43.98 1962.27 / 1951.13 1.96 / 2.15
ScanDMM [37] 43.09 / 42.25 1932.62 / 1927.41 3.54 / 3.58
ScanTD (ours) 42.91 / 41.07 1894.26 / 1891.31 3.97 / 4.12
Human 39.87 / 38.54 1847.38 / 1828.98 7.92 / 6.94
Random walk 16.23 / 13.87 849.25 / 743.57 2.09 / 2.85
SaltiNet [1] 14.46 / 13.96 604.33 / 601.46 2.34 / 2.28
TAHA [44] 17.84 / 17.02 597.36 / 594.51 2.42 / 2.66
HAT [46] 13.21 / 13.09 562.39 / 658.13 2.65 / 2.71

AOI [42] ScanGAN360 [27] 12.87 / 12.41 554.73 / 551.16 3.76 / 3.89
ScanDMM [37] 12.32 / 12.10 529.08 / 520.97 4.27 / 4.36
ScanTD (ours) 12.18 / 12.09 497.44 / 459.65 4.76 / 4.89
Human 10.23 / 8.70 395.08 / 378.39 6.94 / 8.01
Random walk 48.19 / 43.78 2417.40 / 2342.59 1.75 / 2.68
SaltiNet [1] 41.31 / 40.95 1842.39 / 1841.07 2.47 / 2.51
TAHA [44] 45.62 / 44.20 1812.34 / 1809.38 3.02 / 3.25
HAT [46] 44.69 / 42.90 1801.30 / 1795.12 3.47 / 3.53

Salient360! [32] ScanGAN360 [27] 39.01 / 38.72 1720.51 / 1706.10 3.58 / 3.72
ScanDMM [37] 37.85 / 37.02 1519.06 / 1507.62 3.68 / 3.73
ScanTD (ours) 37.67 / 37.20 1484.32 / 1470.51 3.98 / 4.07
Human 34.17 / 32.98 1474.22 / 1397.76 4.75 / 5.92

two state-of-the-art 2D scanpath prediction methods that support
free-view mode, including HAT[46] and TAHA[44]. In addition,
we noted a newly posted arXiv paper that also uses the Diffusion
Model for scanpath prediction [23]. However, it did not share its
source code and trained models. Furthermore, its evaluation metrics
differ from those of the published related works ScanDMM [37]
and ScanGAN360 [27], and it did not provide sufficient details of
their evaluation. Therefore, we chose not to compare with [23].
OurComparisonMethodology. ScanTD can produce any number
of scanpaths as required to simulate different viewers. To perform
a fair comparison, we use each method (SalitiNet [1], ScanDMM
[37], ScanGAN360 [27], HAT [46], TAHA [44] and our ScanTD) to
generate multiple scanpaths for each image and calculate both the
average and the best results for each method using the evaluation
metrics. Specifically, we compare each predicted scanpath against
each ground truth scanpath, averaging the results for every image.
Finally, the average result across each dataset is calculated. We
also select the scanpath that best matches a corresponding ground
truth scanpath for each image and then calculate the average of
these results across the entire dataset. To minimize potential bias
from randomly generated scanpaths, we tested each model 10 times
per image. The results were then averaged to determine the final
performance metrics as in [37]. For enhanced comparability and
interpretability of the results, we calculate the human consistency
[27] for each metric, serving as a realistic upper limit for model
performance (refer to “Human” in Table 1). Additionally, we con-
trast our results with those of a chance model, which generates

scanpaths by incorporating random Brownian motion into prior
positions (refer to “Random walk” in Table 1) [37].
Comparison Results Analysis. Table 1 and Figure 5 show that
our method, ScanTD, can generate results closer to the ground
truth, with predicted gaze points showing reasonable displacements
in the vertical direction. The beach scene is from the Salient360!
dataset [32], and the temporal order of our predicted gaze points
across different parts of the scene more closely matches the ground
truth compared to other methods. The square scene is from the
AOI dataset [42] and our predicted gaze points concentrated on
significant buildings. The office scene is from Sitzmann [35], and
the color distribution of gaze points demonstrates that ScanTD can
better capture the temporal order of gaze points.

4.4 Ablation Study
We conducted ablation experiments to analyze the role of Spherical
CNNs [9] in scene feature extraction and the ability of our designed
TTS module to capture temporal information of gaze points. We
compare ScanTD with three baselines: (1) 𝑆𝑐𝑎𝑛𝑇𝐷1, using origi-
nal ViT without spherical CNNs [9] for 360◦ image scene feature
extraction; (2) 𝑆𝑐𝑎𝑛𝑇𝐷2, using Diffusion Model with original trans-
former without TTS module for scanpath generation; (3) 𝑆𝑐𝑎𝑛𝑇𝐷3,
performing both of these two modifications. All baseline models
are trained in the same settings, and the results are shown in Ta-
ble 2. We observe that the model achieves the best performance
when incorporating both the Spherical CNNs [9] and our designed
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Figure 6: Qualitative comparison to different saliency detection models on three datasets

Table 2: Ablation Study about the effectiveness of our design.

Database Method LEV ↓ DTW ↓ REC ↑
𝑆𝑐𝑎𝑛𝑇𝐷1 46.80 1996.45 3.09
𝑆𝑐𝑎𝑛𝑇𝐷2 45.94 2098.41 2.83

Sitzmann[35] 𝑆𝑐𝑎𝑛𝑇𝐷3 47.48 2111.15 2.60
ScanTD 42.79 1899.70 3.98
𝑆𝑐𝑎𝑛𝑇𝐷4 42.93 1941.20 3.37
𝑆𝑐𝑎𝑛𝑇𝐷5 42.91 1941.18 3.86
𝑆𝑐𝑎𝑛𝑇𝐷1 39.19 1698.517 3.168
𝑆𝑐𝑎𝑛𝑇𝐷2 38.74 1787.67 2.74

Salient360![32] 𝑆𝑐𝑎𝑛𝑇𝐷3 39.98 1874.89 2.42
ScanTD 38.12 1404.32 4.17
𝑆𝑐𝑎𝑛𝑇𝐷4 38.17 1507.09 3.95
𝑆𝑐𝑎𝑛𝑇𝐷5 37.88 1499.73 3.91

TTS module. Moreover, to determine whether the improved per-
formance is due to the employed TTS modules rather than the
larger number of parameters, we employed ten spatial transformer
blocks in 𝑆𝑐𝑎𝑛𝑇𝐷4 to ensure a similar number of parameters with
the original 𝑆𝑐𝑎𝑛𝑇𝐷 that has eight TTS blocks; both models have
sizes of approximately 230 MB. Additionally, we compared another
model, 𝑆𝑐𝑎𝑛𝑇𝐷5, in which the number of TTS module blocks is
reduced to four, to explore the impact of the number of parameters
on model performance.

4.5 Generalizability Analysis
We demonstrate the generalizability of our approach by applying
it to saliency detection in 360◦ images. Saliency detection in 360◦
images aims to identify and predict areas within panoramic images
that are most likely to capture and hold the viewer’s visual atten-
tion. Intuitively, the series of gaze points generated by a scanpath
prediction approach should be able to used to indicate the regions
where the users concentrate within an image. We use the scanpaths
predicted by ScanGAN360 [27], ScanDMM [37] and our method to

generate saliency maps. Following the method introduced in [37]
to convolve fixation maps, we use an adapted Gaussian function
[40] to generate a saliency map from multiple predicted scanpaths:

𝐺 (𝑥,𝑦) = 1
2𝜋𝜎2𝑦

exp
(
− 𝑥2

2𝜎𝑥

)
exp

(
− 𝑦2

2𝜎𝑦

)
(11)

where 𝜎𝑥 =
𝜎𝑦

cos(𝜃 ) . 𝜎𝑦 = 15◦ is a constant value, and 𝜃 ∈
[
−𝜋

2 ,
𝜋
2
]

is the latitude of the gaze point. Fig. 6 shows a qualitative compari-
son where the saliency maps generated from ScanTD’s prediction
results are better than the others. The gallery scene is from the AOI
dataset [42], the room scene is from the Sailent360! dataset [32],
and the building scene is from Sitzmann [35].

5 Conclusion and Future Work
We propose a novel method, ScanTD, which offers a potential so-
lution for the visual task of realistic scanpaths modeling on 360◦
images. Through extensive experiments, we have confirmed that
our method ScanTD achieves state-of-the-art performance across
three test datasets. Our model, ScanTD, advances the theoretical un-
derstanding of scanpath generation in panoramic viewing and also
holds significant potential for practical real-world applications. For
instance, by accurately modeling gaze trajectories, our approach
can aid content creators in designing VR and AR experiences that
naturally guide the viewer’s attention, enhancing narrative story-
telling and informational clarity.

There is still much to explore in scanpath modeling, especially
when considering its potential applications in various sectors. For
example, the task we are currently studying is free-viewing scan-
paths. However, many practical applications of VR, such as navi-
gational training for pilots or surgical procedure simulations for
medical professionals, require task-driven human visual attention
data. This distinction underscores the need for developing scan-
path models that are tailored to specific tasks, offering a promising
research direction that could enhance the effectiveness of training
and education in VR environments.



ScanTD: 360◦ Scanpath Prediction based on Time-Series Diffusion MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Acknowledgments
This work was supported by Marsden Fund Council managed by
the Royal Society of New Zealand under Grant MFP-20-VUW-180.

References
[1] Marc Assens, Xavier Giro i Nieto, Kevin McGuinness, and Noel E. O’Connor. 2017.

SaltiNet: Scan-path prediction on 360 degree images using saliency volumes. In
IEEE International Conference on Computer Vision Workshops. 2331–2338.

[2] Marc Assens, Xavier Giro i Nieto, Kevin McGuinness, and Noel E. O’Connor. 2018.
PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks. In
Proceedings of the European Conference on Computer Vision (ECCV) Workshops.
0–0.

[3] Marc Assens, Xavier Giro i Nieto, Kevin McGuinness, and Noel E. O’Connor.
2018. Scanpath and saliency prediction on 360 degree images. In Signal Processing:
Image Communication, Vol. 69. 8–14.

[4] Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann.
2021. Conditional image generation with score-based diffusion models. arXiv
preprint (2021). arXiv:2111.13606

[5] Giuseppe Boccignone, Vittorio Cuculo, and Alessandro D’Amelio. 2020. How to
look next? A data-driven approach for scanpath prediction. In Formal Methods.
FM 2019 International Workshops: Porto, Portugal, October 7–11, 2019, Revised
Selected Papers, Part I, Vol. 3. Springer International Publishing, 131–145.

[6] Fang-Yi Chao, Lu Zhang, Wassim Hamidouche, and Olivier Deforges. 2018. Sal-
gan360: Visual saliency prediction on 360 degree images with generative ad-
versarial networks. In 2018 IEEE International Conference on Multimedia & Expo
Workshops (ICMEW). 1–4.

[7] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and
William Chan. 2020. WaveGrad: Estimating Gradients for Waveform Generation.
arXiv preprint arXiv:2009.00713 (2020).

[8] Xianyu Chen, Ming Jiang, and Qi Zhao. 2021. Predicting human scanpaths in
visual question answering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. IEEE, 10876–10885.

[9] Taco S. Cohen, Mario Geiger, Jonas Koehler, and Max Welling. 2018. Spherical
CNNs. arXiv preprint arXiv:1801.10130 (2018).

[10] Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger. 2018.
SphereNet: Learning Spherical Representations for Detection and Classifica-
tion in Omnidirectional Images. In Proceedings of the European Conference on
Computer Vision (ECCV). Springer, 518–533.

[11] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-degree
video head movement dataset. Proceedings of the 8th ACM Multimedia Systems
Conference (2017), 199–204. https://doi.org/10.1145/3083187.3083215

[12] Antoine Coutrot, Janet H. Hsiao, and Antoni B. Chan. 2018. Scanpath modeling
and classification with hidden Markov models. Behavior Research Methods 50, 1
(2018), 362–379. https://doi.org/10.3758/s13428-017-0876-8

[13] Roberto G. de A. Azevedo, Neil Birkbeck, Francesca De Simone, Ivan Janatra, Balu
Adsumilli, and Pascal Frossard. 2019. Visual distortions in 360-degree videos. IEEE
Transactions on Circuits and Systems for Video Technology 30, 8 (2019), 2524–2537.
https://doi.org/10.1109/TCSVT.2019.2927344

[14] Ryan Anthony Jalova de Belen, Tomasz Bednarz, and Arcot Sowmya. 2022. Scan-
pathnet: A recurrent mixture density network for scanpath prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, 5010–5020.

[15] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 248–255.

[16] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion Models Beat GANs on
Image Synthesis. Advances in Neural Information Processing Systems 34 (2021),
8780–8794.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020).

[18] Ramin Fahimi and Neil D. B. Bruce. 2021. On metrics for measuring scanpath
similarity. Behavior Research Methods 53 (2021), 609–628. https://doi.org/10.3758/
s13428-020-01441-0

[19] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. Fixation Prediction for 360° Video Streaming in Head-
Mounted Virtual Reality. In Workshop on Network and Operating Systems Support
for Digital Audio and Video. ACM, 67–72.

[20] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. 2022.
Diffuseq: Sequence to Sequence Text Generation with Diffusion Models. arXiv
preprint arXiv:2210.08933.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic
Models. In Advances in Neural Information Processing Systems, Vol. 33. Neural

Information Processing Systems Foundation, 6840–6851.
[22] Zhiming Hu, Sheng Li, Congyi Zhang, Kangrui Yi, Guoping Wang, and Dinesh

Manocha. 2020. DGaze: CNN-based Gaze Prediction in Dynamic Scenes. IEEE
Transactions on Visualization and Computer Graphics 26, 5 (2020), 1902–1911.
https://doi.org/10.1109/TVCG.2020.2973473

[23] Chuhan Jiao, Yao Wang, Guanhua Zhang, Mihai Băce, Zhiming Hu, and Andreas
Bulling. 2024. DiffGaze: A Diffusion Model for Continuous Gaze Sequence
Generation on 360° Images. arXiv preprint arXiv:2403.17477 (2024). https:
//doi.org/10.48550/arXiv.2403.17477.

[24] Matthias Kümmerer and Matthias Bethge. 2021. State-of-the-art in human scan-
path prediction. CoRR abs/2102.12239 (2021). https://arxiv.org/abs/2102.12239

[25] Matthias Kümmerer, Matthias Bethge, and Thomas S. A. Wallis. 2022. DeepGaze
III: Modeling free-viewing human scanpaths with deep learning. Journal of Vision
22, 5 (2022), 7–7.

[26] Yichong Leng, Zehua Chen, Junliang Guo, Haohe Liu, Jiawei Chen, Xu Tan,
Danilo Mandic, Lei He, Xiangyang Li, Tao Qin, Sheng Zhao, and Tie-Yan Liu.
2022. BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for
Binaural Audio Synthesis. Advances in Neural Information Processing Systems 35
(2022), 23689–23700.

[27] Daniel Martin, Ana Serrano, Alexander W. Bergman, Gordon Wetzstein, and
Belen Masia. 2022. ScanGAN360: A generative model of realistic scanpaths for
360° images. IEEE Transactions on Visualization and Computer Graphics 28, 5
(2022), 2003–2013. https://doi.org/10.1109/TVCG.2022.3150502

[28] Daniel Martin, Ana Serrano, and Belen Masia. 2020. Panoramic convolutions for
360 single-image saliency prediction. In CVPR Workshop on Computer Vision for
Augmented and Virtual Reality, Vol. 2. 2.

[29] Rafael Monroy, Sebastian Lutz, Tejo Chalasani, and Aljosa Smolic. 2018. Salnet360:
Saliency maps for omni-directional images with cnn. Signal Processing: Image
Communication 69 (2018), 26–34.

[30] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. 2018. Your attention is unique:
Detecting 360-degree video saliency in head-mounted display for head movement
prediction. In ACM International Conference on Multimedia. ACM, 1190–1198.
https://doi.org/10.1145/3240508.3240669

[31] Alexander Q. Nichol and Prafulla Dhariwal. 2021. Improved Denoising Diffusion
Probabilistic Models. In International Conference on Machine Learning. PMLR,
8162–8171.

[32] Yashas Rai, Jesús Gutiérrez, and Patrick Le Callet. 2017. A Dataset of Head
and Eye Movements for 360 Degree Images. In Proceedings of the 8th ACM on
Multimedia Systems Conference. ACM, 205–210.

[33] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim
Salimans, David Fleet, and Mohammad Norouzi. 2022. Palette: Image-to-image
diffusion models. In ACM SIGGRAPH 2022 Conference Proceedings. ACM, 1–10.

[34] Nahian Siddique, Sidike Paheding, Colin P. Elkin, and Vijay Devabhaktuni. 2021.
U-Net and its variants for medical image segmentation: A review of theory and
applications. IEEE Access 9 (2021), 82031–82057.

[35] Vincent Sitzmann, Ana Serrano, Amy Pavel, Maneesh Agrawala, Diego Gutierrez,
Belen Masia, and GordonWetzstein. 2018. Saliency in VR: How do people explore
virtual environments? IEEE Transactions on Visualization and Computer Graphics
24, 4 (2018), 1633–1642. https://github.com/vsitzmann/vr-saliency

[36] Mikhail Startsev and Michael Dorr. 2018. 360-aware saliency estimation with
conventional image saliency predictors. Signal Processing: Image Communication
69 (2018), 43–52.

[37] Xiangjie Sui, Yuming Fang, Hanwei Zhu, Shiqi Wang, and Zhou Wang. 2023.
ScanDMM: A Deep Markov Model of Scanpath Prediction for 360° Images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, 6989–6999.

[38] Xiangjie Sui, Hanwei Zhu, Xuelin Liu, Yuming Fang, Shiqi Wang, and Zhou
Wang. 2023. Perceptual Quality Assessment of 360◦ Images Based on Generative
Scanpath Representation. arXiv preprint arXiv:2309.03472 (2023).

[39] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. 2021. CSDI: Con-
ditional Score-based Diffusion Models for Probabilistic Time Series Imputation.
Advances in Neural Information Processing Systems 34 (2021), 24804–24816.

[40] Evgeniy Upenik and Touradj Ebrahimi. 2017. A simple method to obtain visual
attention data in head mounted virtual reality. In IEEE International Conference
on Multimedia and Expo Workshops. 73–78.

[41] TianheWu, Shuwei Shi, Haoming Cai, Mingdeng Cao, Jing Xiao, Yinqiang Zheng,
and Yujiu Yang. 2024. Assessor360: Multi-sequence network for blind omnidi-
rectional image quality assessment. Advances in Neural Information Processing
Systems 36 (2024), 64957–64970.

[42] Mai Xu, Li Yang, Xiaoming Tao, Yiping Duan, and Zulin Wang. 2021. Saliency
Prediction on Omnidirectional Image With Generative Adversarial Imitation
Learning. IEEE Transactions on Image Processing 30 (2021), 2087–2102. https:
//doi.org/10.1109/TIP.2021.3050861

[43] Li Yang, Mai Xu, Tie Liu, Liangyu Huo, and Xinbo Gao. 2022. TVFormer:
Trajectory-guided visual quality assessment on 360° images with transform-
ers. In Proceedings of the 30th ACM International Conference on Multimedia. ACM,
799–808.

https://arxiv.org/abs/2111.13606
https://doi.org/10.1145/3083187.3083215
https://doi.org/10.3758/s13428-017-0876-8
https://doi.org/10.1109/TCSVT.2019.2927344
https://doi.org/10.3758/s13428-020-01441-0
https://doi.org/10.3758/s13428-020-01441-0
https://doi.org/10.1109/TVCG.2020.2973473
https://doi.org/10.48550/arXiv.2403.17477
https://doi.org/10.48550/arXiv.2403.17477
https://arxiv.org/abs/2102.12239
https://doi.org/10.1109/TVCG.2022.3150502
https://doi.org/10.1145/3240508.3240669
https://github.com/vsitzmann/vr-saliency
https://doi.org/10.1109/TIP.2021.3050861
https://doi.org/10.1109/TIP.2021.3050861


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yujia Wang, Fang-Lue Zhang, and Neil A. Dodgson

[44] Z. Yang, L. Huang, Y. Chen, Z. Wei, S. Ahn, G. Zelinsky, and M. Hoai. 2020.
Predicting goal-directed human attention using inverse reinforcement learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, 193–202.

[45] Zhibo Yang, Lihan Huang, Yupei Chen, Zijun Wei, Seoyoung Ahn, Gregory
Zelinsky, Dimitris Samaras, andMinh Hoai. 2020. Predicting goal-directed human
attention using inverse reinforcement learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE, 193–202.

[46] Z. Yang, S. Mondal, S. Ahn, R. Xue, G. Zelinsky, M. Hoai, and D. Samaras. 2024.
Unifying Top-down and Bottom-up Scanpath Prediction Using Transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, 1683–1693.

[47] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding conditional con-
trol to text-to-image diffusion models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Vol. 2. 3836–3847.

[48] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 11106–11115. https://doi.org/10.1609/aaai.v35i12.
17325

[49] Yuanzhi Zhu, Zhaohai Li, Tianwei Wang, Mengchao He, and Cong Yao. 2023.
Conditional text image generation with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 14235–
14245.

[50] Yucheng Zhu, Guangtao Zhai, and Xiongkuo Min. 2018. The Prediction of Head
and Eye Movement for 360 Degree Images. Signal Processing: Image Communi-
cation 69 (2018), 15–25. Special Award of IEEE ICME 2017 Salient360! Grand
Challenge.

[51] Yucheng Zhu, Guangtao Zhai, Xiongkuo Min, and Jiantao Zhou. 2020. The
prediction of saliency map for head and eye movements in 360 degree images.
IEEE Transactions on Multimedia 22, 9 (2020), 2331–2344.

https://doi.org/10.1609/aaai.v35i12.17325
https://doi.org/10.1609/aaai.v35i12.17325

	Abstract
	1 Introduction
	2 Related Works
	2.1 Scanpath Modeling on 2D/360 Images
	2.2 Diffusion Model

	3 Method
	3.1 Overview
	3.2 FV-Net
	3.3 SD-Net
	3.4 Scanpath Generation

	4 Experiments and Results
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Diversity and Performance Comparison
	4.4 Ablation Study
	4.5 Generalizability Analysis

	5 Conclusion and Future Work
	Acknowledgments
	References

