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Abstract

360° images have wide applications in fields such as vir-
tual reality and user experience design. Our goal is to ad-
just these images to guide users’ visual attention. To achieve
this, we present a novel task: target scanpath-guided 360° im-
age enhancement, which aims to enhance 360° images based
on user-specified target scanpaths. We develop a Progressive
Scanpath-Guided Enhancement Method (PSEM) to address
this problem through three stages. In the first stage, we pro-
pose a Time-Alignment and Spatial Similarity Clustering
(TASSC) algorithm that accounts for the spherical nature of
360◦ images and the temporal-dependency of scanpaths to
generate representative scanpaths. In the second stage, we
learn the differences between the source and the target scan-
paths and select the objects to be edited based on these differ-
ences. Particularly, we propose a Dual-Stream Scanpath Dif-
ference Encoder (DSDE) embedded into the Segment Any-
thing Model (SAM) network for object mask generation. Fi-
nally, we employ a Stable Diffusion network fine-tuned with
LoRA technology to produce the final enhanced image. Ad-
ditionally, we design special loss functions to supervise the
training of the second and third stages. Experimental re-
sults have demonstrated the effectiveness of our approach for
scanpath-guided 360◦ image enhancement.

Introduction
When users view 360° images in an immersive environment,
their gaze movements form trajectories known as scanpaths.
These scanpaths reflect the dynamic changes in users’ vi-
sual attention over time, capturing both the spatial distri-
bution of gaze points and the temporal sequence of fixa-
tions (Sui et al. 2023). In 360° environments, viewers often
get lost in information-rich scenes captured from the real
world. This may cause them to miss critical content and fail
to capture important information promptly, thereby affect-
ing scene comprehension and degrading the quality of the
user experience. Therefore, we propose a novel task: target
scanpath-guided 360◦ image enhancement as shown in Fig-
ure 1, aiming to edit the content of 360° images to guide
users’ visual attention and enhance scene perceptual quality.
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Figure 1: Target Scanpath-guided 360° Image Enhancement

Compared to visual attention models that focus solely
on the spatial positions of gaze points, such as salient re-
gions (Hu et al. 2023; Zhang et al. 2018; Zhou et al. 2023)
and fixation points (Deng et al. 2024; Qiao et al. 2020), scan-
paths represent a more complex and precise visual pattern,
as they also reflect the temporal order of gaze points. There-
fore, scanpath-guided image enhancement introduces new
challenges that existing saliency-guided image enhance-
ment methods do not encounter (Jiang et al. 2021; Mian-
goleh et al. 2023; Mejjati et al. 2020). Firstly, since differ-
ent individuals produce diverse scanpaths in the same 360◦

scene (Martin et al. 2022), we need to explore how to de-
scribe the source scene’s visual attention pattern to compare
it with the target scanpath. Secondly, modeling the relation-
ship between the 360° content and the spatio-temporal dif-
ferences of the source and the target scanpaths poses a new
challenge that cannot be trivially addressed by any exist-
ing models. Finally, despite the impressive recent progress
in 2D image generation achieved by diffusion models and
their variants (Rombach et al. 2022; Shen et al. 2023; Zhang,
Rao, and Agrawala 2023), these models cannot be directly
applied to generate enhanced, realistic 360° images.

In this research, we propose a Progressive Scanpath-
Guided Enhancement Method (PSEM) to address the above
challenges. Our method consists of three stages, each focus-
ing on specific sub-tasks to improve model interpretability
and robustness (Shen et al. 2023). In the first stage, we esti-
mate multiple diverse scanpaths from the source image and
develop a clustering method to identify the most represen-
tative scanpath, which describes the visual attention pattern
of the source image. Considering the temporal dependency
of scanpaths and the spherical nature of 360◦ images, we
combine Fast Dynamic Time Warping (FastDTW) (Froese
et al. 2023) and Great Circle Distance (GCD) (Gava et al.
2023) to cluster scanpaths of 360◦ images. In the second



stage, we design a Dual-Stream Difference Encoder (DSDE)
to capture the temporal and spatial differences between the
given target scanpath and the source scanpath thereby iden-
tifying objects that need to be edited. DSDE employs rela-
tive time and spatial position encoding and is integrated into
SAM (Kirillov et al. 2023). Finally, we leverage LoRA tech-
nology (Hu et al. 2021) and our own dataset to fine-tune
Stable Diffusion models (Rombach et al. 2022), generating
the final enhanced 360° image. We design specialized loss
functions to guide the training process of our networks. Ex-
perimental results demonstrate that our approach effectively
generates 360° images that align with the target scanpaths.

Related Works
Saliency-Guided Image Enhancement
In recent years, saliency-guided image enhancement has
gained widespread attention for its potential to manipulate
visual attention in images. These studies primarily focus on
traditional 2D images, where target saliency maps serve as
guidance. For example, GazeShiftNet (Mejjati et al. 2020)
model redirects visual attention by applying global param-
eter transformations to both foreground and background re-
gions, representing a significant advancement in visual focus
manipulation. Subsequently, SalG-GAN (Jiang et al. 2021)
introduced a saliency-based attention module and a disen-
tangled representation framework, generating images that
align with target saliency maps. Building on this, (Aberman
et al. 2022) proposed a method to edit salient regions in 2D
images through backpropagation using a pre-trained visual
saliency prediction model, enabling more precise and tar-
geted modifications. More recently, (Miangoleh et al. 2023)
achieved a balance between reducing inference time and en-
hancing target objects by combining saliency loss with real-
ism loss, producing high-quality images that maintain real-
ism while satisfying target saliency requirements.

However, unlike saliency maps, scanpaths include both
the spatial and temporal information of gaze points, reflect-
ing more complex visual attention patterns. Effectively en-
abling models to learn and utilize the temporal information
in scanpaths remains a critical challenge. Moreover, most
current methods for using saliency maps to determine which
objects to mask involve either overlapping the original ob-
ject saliency with the target object saliency (Jiang et al.
2021; Miangoleh et al. 2023) or using source images rely on
source images where users have manually selected specific
objects (Mejjati et al. 2020). In contrast, scanpaths do not
necessarily focus on specific objects, which poses new chal-
lenges for object-level image enhancement. Additionally,
360◦ images depict panoramic environments with richer ob-
jects and more complex scene information compared to 2D
images. This added complexity makes it more difficult to
analyze and utilize scanpaths. These factors underscore the
need for innovative approaches to scanpath-guided 360◦ im-
age enhancement.

Pre-trained Segmentation and Generation Models
We adopt several pre-trained image segmentation and gener-
ation models in our approach. The Segment Anything Model

(SAM) (Kirillov et al. 2023) is pre-trained on the large-
scale SA-1B dataset and can segment any objects using var-
ious prompts, demonstrating exceptional zero-shot general-
ization capabilities for the rapid generation of high-quality
segmentation masks. It also adapts well to distortions in
360◦ images without requiring specific labels. Therefore, we
use a pre-trained SAM model for the second stage, lever-
aging its pre-trained knowledge of diverse scenes and ob-
jects. Stable Diffusion (SD) (Rombach et al. 2022) is a pre-
trained model based on latent diffusion and exhibits excel-
lent image generative capabilities. Numerous studies and
applications have focused on fine-tuning SD (Shen et al.
2023; Brooks, Holynski, and Efros 2023) for image inpaint-
ing. These works employ various fine-tuning strategies, such
as ControlNet (Zhang, Rao, and Agrawala 2023), which
incorporates an additional conditional control network to
handle multiple input modalities, and lightweight methods
like LoRA (Hu et al. 2021) for parameter-efficient adaptive
training. We found that running the vanilla SD (Rombach
et al. 2022) model demonstrated its potential for 360◦ im-
age enhancement, although the output results were not al-
ways stable. Given the limitations of our training dataset size
and computational resources, we chose to fine-tune SD us-
ing LoRA, which enables efficient parameter adaptation in
resource-constrained settings.

Methods
Overview of PSEM
The framework of our target scanpath-guided 360◦ im-
age enhancement method, PSEM, is illustrated in Figure 2.
PSEM consists of three stages: (1) Given the predicted scan-
paths of a source 360◦ image, we apply a Temporal Align-
ment and Spatial Similarity Clustering (TASSC) method to
generate a representative scanpath as the source scanpath.
(2) The Dual-Stream Difference Encoder (DSDE) analyzes
the spatiotemporal differences between the source and the
target scanpaths. These differences are then combined with
image features and fed into an attention module to gener-
ate the final mask, which identifies the objects to be edited
to match the target scanpath. (3) The source image and the
mask are fed into the SD network, which is fine-tuned with
LoRA, to produce the final enhanced 360◦ image.
Problem Definition A scanpath S is defined as a tempo-
ral sequence of N gaze points {s1, ..., sN}. Given a source
image Is and a target scanpath St containing a sequence of
gaze points, our goal is to generate an enhanced image Ie
with a scanpath that matches St. In the dataset preprocessing
stage, we use an external scanpath prediction model (Wang,
Zhang, and Dodgson 2024) to estimate multiple scanpaths
{Si

p}i=1,...,M for the source image Is.

Stage 1: Source Scanpath Generation
We propose a Temporal Alignment and Spatial Similar-
ity Clustering (TASSC) algorithm to cluster multiple pre-
dicted scanpaths of a 360◦ image into a single representative
source scanpath. TASSC effectively addresses two primary
issues in scanpath analysis: the spherical nature of 360◦ im-
ages (Zhang et al. 2023; Li et al. 2022) and the temporal
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Figure 2: The framework of PSEM. First, a scanpath prediction model generates multiple scanpaths for the source image (Is).
From these, a representative source scanpath (Ss) is extracted. Next, the Dual-Stream Scanpath Difference Encoder (DSDE)
analyzes the spatiotemporal differences between Ss and the target scanpath, utilizing the SAM Encoder to create an editing
mask. Finally, a fine-tuned Stable Diffusion model produces the enhanced image (Ie).

dependency of scanpaths.
The predicted scanpaths for a single image are rep-

resented as {S1
p , S

2
p , . . . , S

M
p }, where each path Sk

p =

{s1p,k, s2p,k, . . . , s
Nk

p,k}. Each gaze point sip,k is represented by
its spherical coordinates sip,k = (ϕi

p,k, λ
i
p,k), where ϕi

p,k de-
notes the latitude and λi

p,k is the longitude. To improve the
stability of our method, we preprocess the predicted scan-
paths by removing outlier gaze points based on the distances
between consecutive gaze points. If the distance between
a point and its neighbors exceeds the mean by more than
2.5 standard deviations, it is identified as a potential spa-
tial outlier (Holmqvist et al. 2011). Gaze points with signif-
icantly longer time intervals are identified as potential tem-
poral outliers (Salvucci and Goldberg 2000). A gaze point is
confirmed as an outlier only if it is classified as both a spa-
tial and temporal outlier. Outliers are then removed and re-
placed using spherical linear interpolation to maintain conti-
nuity (Hessels et al. 2017). Particularly, the spatial distance
between two gaze points on the spherical surface is mea-
sured by the Great Circle Distance (GCD) (Gava et al. 2023)
as:

GCD(s1, s2) = r · arccos
(
sin(ϕ1) sin(ϕ2)

+ cos(ϕ1) cos(ϕ2) cos(∆λ)
) (1)

where (ϕ1, λ1) and (ϕ2, λ2) are the spherical coordinates
of s1 and s2, ∆λ = |λ1 − λ2|, and r is the radius of
the sphere (assumed to be 1 for a unit sphere). We also
use GCD to obtain a distance matrix D, which represents

the differences between all the scanpaths. For each en-
try, D(i, j) = GCD(sip,k, s

j
p,l). Then we apply the Fast-

DTW (Froese et al. 2023) algorithm to the distance ma-
trix D, where we set the radius r as 20. We employ the
Complete Linkage method (Murtagh and Contreras 2012)
for hierarchical clustering, which does not assume any spe-
cific cluster shape and works well with non-Euclidean dis-
tance measures such as the Great Circle Distance. We de-
termine the number of clusters (k = 30) experimentally.
Let {C1, C2, . . . , Ck} denote the set of all clusters. For
each cluster Ci, we generate an intermediate representative
scanpath using the FastDTW Barycenter Averaging (FDBA)
method (Petitjean, Ketterlin, and Gancarski 2011) and select
the scanpath closest to the cluster center as the initial repre-
sentative scanpath. We iteratively align all scanpaths in the
cluster to the intermediate representative sequence and up-
date it by averaging the aligned scanpaths at each time step.
The barycenter Bi(t) at each time step t for cluster Ci is
calculated as follows:

Bi(t) =
1

|Ci|
∑
S∈Ci

S(t) (2)

where |Ci| is the number of scanpaths in cluster Ci, and S(t)
is the value of each scanpath in Ci at time t. For each cluster
Ci, we iteratively apply FDBA until one of the following
conditions is met: (i) the maximum number of iterations,
set to 300, is reached, or (ii) the change in the central se-
quence between consecutive iterations is less than a prede-
fined threshold of 0.001. This ensures convergence of the



algorithm to a stable result within a reasonable time. To ob-
tain a single representative scanpath for the source image,
referred to as the ‘source scanpath’, we apply the FDBA
method once more to the k intermediate representative scan-
paths. This final step integrates the characteristics of all clus-
ters into a unified source scanpath Ss, providing a compre-
hensive representation of the viewing behavior for the given
360◦ image.

Algorithm 1: Temporal Alignment and Spatial Similarity
Clustering (TASSC)

Input:
1: {S1

p , S
2
p , . . . , S

M
p } - Predicted scanpaths

2: Each Sk
p = {s1p,k, . . . , s

Nk

p,k}, each sip,k = (ϕi
p,k, λ

i
p,k)

Output: Source scanpath Ss

3: Remove outliers
4: for each pair Sk

p and Sl
p do

5: Calculate GCD matrix D(i, j) using Equation (2)
6: Apply FastDTW(D, radius=20)
7: end for
8: Get clusters {C1, C2, . . . , Ck} by Complete Linkage
9: for each cluster Ci do

10: Select scanpath closest to the cluster center as initial
central scanpath Bi

11: while iteration < 300 and ∆Bi > 0.001 do
12: Align all scanpaths in Ci to Bi

13: Update Bi(t) for all time steps by:
14: Bi(t)← 1

|Ci|
∑

S∈Ci
S(t)

15: Record the change ∆Bi

16: end while
17: end for
18: Apply FDBA on {Bk}
19: return the final source scanpath Ss

Stage 2: Selection of the Objects to Edit
The second stage of our method generates a mask indicating
the objects to be edited. We propose a Dual-Stream Scanpath
Difference Encoder (DSDE) integrated with the pre-trained
SAM model for the mask prediction. The DSDE is designed
to capture the temporal and spatial differences between the
source scanpath Ss = {s1s, s2s, . . . , sNs } and a given target
scanpath St = {s1t , s2t , . . . , sNt }. Before inputting these two
scanpaths into the DSDE module, we convert the spherical
coordinates sis,k = (ϕi

s,k, λ
i
s,k) into normalized 2D planar

coordinates (xi, yi) to facilitate processing by neural net-
works. Additionally, we use ti to represent the time stamp
of these gaze points for temporal sequence encoding.

First, we use the pre-trained SAM encoder to process
Is and extract features F , with a feature dimension of
256. Then, we apply Relative Temporal Position Encoding
(RTPE) and Relative Spatial Position Encoding (RSPE) to
encode the temporal and spatial information of the scan-
paths, respectively. RTPE is conducted based on the tem-
poral order difference ∆t = |ti − tj |, using the following
formulas:

RTPE(2i) = sin

(
∆t

100002i/dmodel

)
(3)

RTPE(2i+ 1) = cos

(
∆t

100002i/dmodel

)
(4)

where dmodel is set to 128. RSPE is encoded based on the
spatial coordinate differences ∆x = |xi − xj | and ∆y =
|yi − yj |, with the following formula:

RSPE(∆x,∆y) =

[
sin

∆x

σ
, cos

∆x

σ
, sin

∆y

σ
, cos

∆y

σ

]
(5)

where σ is set to 100.
These encodings are passed through a 6-layer Trans-

former encoder to obtain the temporal sequence represen-
tations T temp

s and T temp
t , as well as the spatial distribution

representations T spat
s and T spat

t for the source and target
scanpaths. Next, we calculate their temporal difference as
Dtemp = MLP(T temp

s − T temp
t ), and the spatial difference

as Dspat = MLP(T spat
s − T spat

t ). These differences are in-
tegrated through a feature fusion layer to generate the fi-
nal difference feature Dfinal = MLP(Concat[Dtemp, Dspat]),
where the MLP layer contains 512 hidden units. Using Dfinal
and F from the SAM encoder, we create an attention map
A = Attention(F,Dfinal). The attention mechanism employs
an 8-head multi-head attention, with each head having a di-
mension of 32. We then select two points with the highest
attention values from A, denoted as P = {P1, P2}. This
selection is motivated by our goal of editing one or two ob-
jects in the image, which is typically sufficient for person-
alized image enhancement tasks. This approach allows us to
focus on the most salient areas that differ between the source
and target scanpaths, while maintaining computational effi-
ciency. Finally, the selected points P and image features F
are input into the SAM decoder to generate the final segmen-
tation mask: Mediting. The decoder consists of four convolu-
tional blocks, each with a 3x3 kernel, where the number of
channels decreasing from 256 to 64.
Training We designed a Dual-Stream Attention Loss, LDSA,
to guide the training of the second stage. We do not rely on
an external scanpath prediction model because it could in-
troduce additional errors and significantly increase system
complexity, complicating training and optimization. Our ap-
proach offers a more direct and efficient method for utilizing
scanpath information, specifically targeting the selection of
two key points that best reflect the differences between scan-
paths. Our loss function considers multiple factors, includ-
ing attention focus, spatial diversity, difference consistency,
and attention distribution. It is defined as follows:

LDSA = Lattn + λdiv · Ldiv

+ λcons · Lcons + λdist · Ldist (6)

Specifically, the attention focus loss is defined as: Lattn =
1 − 0.5 · (A(P1) + A(P2)). Here, A(Pk) represents the at-
tention value at point Pk, ranging from 0 to 1. This loss aims



to guide the model to focus more on the two points with the
highest attention values. When their average attention value
approaches 1 (maximum), Lattn approaches 0, achieving the
optimal state. This design effectively penalizes the selection
of low-attention points, encouraging the model to focus on
the most salient areas in the image, which typically corre-
spond to the main differences between the source and target
scanpaths.

The spatial diversity loss ensures that the selected points
are adequately separated in space, which is given by:

Ldiv = exp

(
−∥P1 − P2∥2

2 · σ2

)
. (7)

The difference consistency loss is Lcons = ||Dfinal −
f(Ss, St)||2. Dfinal is the difference feature output by the
DSDE, and f(Ss, St) is the expected difference calculated
based on the source and target scanpaths. The attention dis-
tribution loss is Ldist = KL(A||U), which is the Kullback-
Leibler divergence between the attention distribution A and
a uniform distribution U . Lcons ensures that the difference
feature generated by the DSDE aligns with the actual scan-
path differences. Ldist prevents the over-concentration of at-
tention in certain areas of the image. We experimentally set
the parameters as: λdiv = 0.2, λcons = 0.1, λdist = 0.05, and
σ = 50 pixels, ensuring the model selects the most relevant
points while maintaining diversity.

Stage 3: Enhanced Image Generation
This stage learns to generate an enhanced image based on
the source image and the mask containing the objects to
be edited. We employed the Low-Rank Adaptation (LoRA)
technique to fine-tune the Stable Diffusion v1-5 model for
our 360◦ image enhancement task. Specifically, we applied
LoRA to all attention modules within the U-Net, including
each self-attention and cross-attention layer in the 12 ResNet
blocks, totaling 48 attention layers. For each attention layer,
LoRA was applied to its query, key, and value projection
matrices. The weight matrix decomposition was performed
using the formula:

W ′ = W + αBA, (8)
where W ∈ Rdout×din is the original weight matrix, A ∈
Rr×din , and B ∈ Rdout×r, with r being the low-rank parame-
ter. We chose r = 4 and set the adjustable scaling factor α to
0.1. This approach significantly reduced the number of train-
able parameters while maintaining the model’s adaptabil-
ity. By leveraging LoRA, we effectively adapted the model
to the unique requirements of 360◦ image editing, ensuring
computational efficiency and performance preservation.

Although the vanilla Stable Diffusion model (Rombach
et al. 2022) is capable of editing specific objects within a
mask while preserving the background unchanged, we ob-
served suboptimal performance in certain scenes when re-
moving objects. To address this issue, we designed a local-
ized sensitivity reconstruction loss, Llocal, and fine-tuned the
model using our dataset. Llocal is defined as:

Llocal =
1

N

N∑
i=1

wi · |Pi(Igen)− Pi(Itarget)|+λ ·R(w), (9)

where N = 256 represents the block number when divid-
ing the image, Pi is the operation extracting a 32× 32 pixel
patch from the image, Igen and Itarget are the generated and
target images respectively, wi is the weight assigned to each
patch, and R(w) is the entropy regularization of the weights
with λ = 0.01 as the regularization strength. The weights wi

are determined by calculating the Structural Similarity In-
dex (SSIM) for each patch. We designed this localized sen-
sitive loss function mainly because only the objects within
the mask area are edited. By focusing on localized regions,
we can perform finer adjustments within the mask-specified
area, improving editing outcomes such as more thorough
object removal and avoiding unnecessary alterations to the
background regions.

Experiment
Datasets establishment

Training datasets Currently, there is no existing dataset for
the scanpath-guided 360◦ image enhancement task. Inspired
by SalG-GAN (Jiang et al. 2021), we constructed a dataset
of 1000 360◦ image pairs to train our model. We first col-
lected 1000 real-life 360◦ images covering various scenes
as source images. For each source image, we used a scan-
path prediction model to generate 1000 scanpaths and find a
representative source scanpath using our proposed TASSC
method. We then randomly selected two objects in each
source image and manually created masks for them using
Labelme. To create the corresponding target images, we re-
moved these two masked objects from each source image.
We then applied the same scanpath prediction model to gen-
erate 1000 scanpaths and a representative scanpath using
TASSC for each target image. Our final training dataset con-
sists of 1000 pairs, each containing a source 360◦ image
with its representative source scanpath, and a target 360◦
image (created by removing two objects from the source
image) with its representative target scanpath. This dataset
enables our model to learn the relationship between object
removal in 360◦ images and the resulting changes in scan-
paths, facilitating scanpath-guided image enhancement.

Notably, we chose to use scanpath prediction model to
generate possible scanpath rather than real data for train-
ing for two main reasons: First, acquiring a sufficiently
large scale of real human scanpath data in VR environments
would require extensive eye-tracking experiments, which is
a significant challenge in terms of time and resources. Sec-
ondly, even if real experiments were conducted, the amount
of data obtained might not provide sufficient diversity or vol-
ume to train a complex deep learning model. When enough
real data becomes available in the future, our model archi-
tecture and design approach can be directly applied to those
data.

Test Set To evaluate the performance and generalizability
of our model, we constructed a test set of 200 360◦ images,
which includes: (i) 200 source images captured by us, cov-
ering various scenes. (ii) Generated source scanpaths using
the same method for the training set. (iii) Each image is ran-
domly assigned a target scanpath provided by users.
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Figure 3: Experimental Results

Evaluation Metrics
We quantitatively evaluate the performance of the clustering
algorithm TASSC and the effectiveness of PSEM in guiding
visual attention. To evaluate the performance of the TASSC
clustering algorithm, we use three clustering quality metrics,
including the Silhouette Coefficient, Calinski-Harabasz In-
dex, and Davies-Bouldin Index (Arbelaitz et al. 2013). The
Silhouette Coefficient ranges from -1 to 1, where higher
values indicating better clustering quality. The Calinski-
Harabasz Index measures the ratio of cluster separation to
compactness, with higher values indicating better clustering.
The Davies-Bouldin Index measures cluster separation, with
lower values indicating better clustering quality.

To evaluate the effectiveness of our PSEM in guiding vi-
sual attention, we use the same external scanpath predic-
tion model to generate 1000 scanpaths for both the source
images and the enhanced images. We then measure the
similarity of these scanpaths to the target scanpaths using
three metrics: Levenshtein Distance (LEV), Dynamic Time
Warping (DTW), and Recurrence Quantification Analysis
(REC) (Wang, Zhang, and Dodgson 2024). Smaller LEV
and DTW value indicates greater similarity, while a higher
REC value suggests more structured and regular patterns
within sequences (Martin et al. 2022). We calculate the av-
erage similarity of the 1000 predicted scanpaths from both
the source and enhanced images to the target scanpaths, as
well as the similarity of the clustered representative scan-
paths to the target scanpaths. By comparing these metrics,
if the scanpaths of the enhanced images show significantly
higher similarity to the target scanpaths than those of the
source images, it demonstrates that our method, PSEM, suc-
cessfully guides users’ visual attention. Additionally, we

conducted qualitative evaluations by visually presenting the
source scanpaths, the target scanpath, and the scanpaths of
the enhanced images.

Training details
The second and third stages are separately trained. The en-
tire training process was carried out on two NVIDIA A100
GPUs. When training the second stage, all parameters of
SAM were frozen, and we only updated the parameters of
the DSDE and Attention modules. We used the Adam op-
timizer with a gradually decreasing learning rate from 1e-
4 to 1e-6. The training lasted for 100 epochs with a batch
size of 32. During the fine-tuning of the SD v1-5 model,
we only updated the parameters of matrices A and B, keep-
ing the original model weights W unchanged. We used the
Adam optimizer with a global learning rate (η) set to 1e-
4, and designed specific learning rate scaling factors (βi)
for each layer. Max-norm regularization was applied, with
maxnorm set to 1, to enhance training stability. This train-
ing lasted for 50 epochs with a batch size of 16.

Experimental Results
Quantitative Evaluation of TASSC As shown in Table 1,
the Silhouette Coefficient of 0.47 indicates good clustering,
with data points well-grouped within clusters and separated
from others. The Calinski-Harabasz index of 1345.92 shows
high intra-cluster cohesion and clear inter-cluster separa-
tion. The Davies-Bouldin index of 0.23 reflects high intra-
cluster similarity and distinct inter-cluster differences. Over-
all, these metrics demonstrate that the TASSC algorithm ef-
fectively groups similar scanpaths while maintaining dis-
tinctions between groups, providing a reliable foundation for



analyzing visual attention in 360◦ images.

Table 1: Quantitative Evaluation of TASSC Algorithm
Sil. Coef. Cal-Har. Index Dav-Bou. Index

Value 0.47 1345.92 0.23

Quantitative Results of Visual Guidance Table 2 shows
that the 200 enhanced images exhibit significant improve-
ments across all metrics: LEV decreased by an average of
10.98%, DTW decreased by 6.78%, and REC increased by
17.84%. This indicates that the scanpaths produced by the
enhanced images are closer to the target scanpath in terms
of sequence structure, spatiotemporal features, and repetitive
patterns. The improvement is even more pronounced when
using clustered representative scanpaths for comparison,
with the REC metric increasing by 42.19%. They strongly
demonstrate the effectiveness of our method in guiding vi-
sual attention, successfully aligning the scanpaths of the en-
hanced images with the desired target scanpaths.
Qualitative Results of Visual Guidance Figure 3 demon-
strates the effectiveness of our method across six scenes in
the test set. (Scene 1) The source scanpath indicates that the
user’s visual attention moves from right to left, while the
target scanpath aims for the user to start near the billboard
on the right side before looking to the left. Our method se-
lects two objects for editing, resulting in the scanpath of en-
hanced image more closely resembles the target scanpath,
effectively guiding the user’s attention from right to left.
(Scene 2) The source scanpath shows that the user’s gaze
is concentrated on the left side, but our target scanpath aims
for the user to focus more on the right. The model identi-
fies that the presence of a person and a bicycle causes the
left-side focus. The scanpath of the enhanced image indi-
cates that removing the person and the bicycle results in the
user’s gaze being more distributed on the right side. Simi-
larly, the enhanced image scanpaths for (Scene 3), (Scene 4),
and (Scene 6) effectively guide the user’s visual attention to
follow the target scanpaths, which have a gaze point move-
ment order opposite to that of the source scanpaths. (Scene
5) The source scanpath is dispersed across both sides of the
scene, but the goal is to focus the user’s visual attention on
the central area. In the enhanced image, the scanpath shows
a higher concentration of gaze points in the central area.

Ablation Study
Effectiveness of fine-tuning The Stable Diffusion v1-5
model supports inpainting using masks as conditions. To
demonstrate the effectiveness of our fine-tuned SD model,
we qualitatively compared its output images with those
from the vanilla SD model. In terms of image consistency,
the fine-tuned SD model generates more coherent results.
For example, in Scene 1, the details of the shrub appear
more natural, while in Scene 2, the door blends seamlessly
with the background. Furthermore, the fine-tuned SD model
avoids introducing unrealistic elements (Scene 3) and is
more effective in removing objects (Scene 4), whereas the
vanilla SD model often retains remnants of the objects.
Impact of inpainting models To evaluate the impact of dif-
ferent inpainting models on scanpath modification, we re-

Table 2: Scanpath Similarity Comparison: Source Image and
Enhanced Image vs. Target

Metric Source Images Enhanced Images Improvement (%)
Average Clustered Average Clustered Average Clustered

LEV ↓ 109.24 105.10 97.25 85.47 10.98% 18.68%
DTW ↓ 4212.25 3904.91 3926.58 3668.45 6.78% 6.05%
REC ↑ 1.85 1.92 2.18 2.73 17.84% 42.19%

So
ur

ce
Im

ag
e

Ed
iti

ng
Ar

ea
O

ut
pu

t o
f

Fi
ne

-t
in

ed
O

ut
pu

t o
f

va
ni

lla
 S

D

Scene 1 Scene 2 Scene 3 Scene 4

Figure 4: Results Generated by the Fine-tuning SD.

placed the current model with diffusion-based approaches,
Inpainting Anything (IA) (Yu et al. 2023) and LaMa (Su-
vorov et al. 2022). Our method improved scanpath similar-
ity by 11.87%, compared to 10.75% for IA and 12.04% for
LaMa. These results suggest that while inpainting methods
affect image details, their influence on our method’s ability
to guide visual attention is minimal. As long as the model
selects objects that significantly impact the scanpath, any
modern inpainting model can be effective.

Conclusion
We propose a target scanpath-guided 360◦ image enhance-
ment task and introduce the Progressive Scanpath-Guided
Enhancement Model (PSEM) to address it. Our method ex-
tracts a representative scanpath from diverse source scan-
paths, models the differences between source and target vi-
sual attention, and identifies objects for editing. Finally, a
fine-tuned Stable Diffusion model generates an enhanced
360◦ image aligned with the target scanpath. Experimental
results validate the effectiveness of our approach.

Currently, our model is limited to modifying scanpaths by
removing specific objects and cannot perform other pixel-
level edits (e.g., enhancing contrast or adjusting colors) or
object-level edits based on scanpath differences. This lim-
itation stems from the small size of our manually anno-
tated training dataset, which could be mitigated by creating
a larger and more diverse dataset. Future work will focus
on optimizing the editing stage to account for the spherical
properties of 360◦ images and conducting real experiments
with participants to expand the dataset with real human data.
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