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360° Stereo Image Composition
with Depth Adaption

Kun Huang, Fang-Lue Zhang, Junhong Zhao, Yiheng Li, and Neil Dodgson

Abstract—360° images and videos have become an economic and popular way to provide VR experiences using real-world content.
However, the manipulation of the stereo panoramic content remains less explored. In this paper, we focus on the 360° image composition
problem, and develop a solution that can take an object from a stereo image pair and insert it at a given 3D position in a target stereo
panorama, with well-preserved geometry information. Our method uses recovered 3D point clouds to guide the composited image
generation. More specifically, we observe that using only a one-off operation to insert objects into equirectangular images will never
produce satisfactory depth perception and generate ghost artifacts when users are watching the result from different view directions.
Therefore, we propose a novel per-view projection method that segments the object in 3D spherical space with the stereo camera pair
facing in that direction. A deep depth densification network is proposed to generate depth guidance for the stereo image generation of
each view segment according to the desired position and pose of the inserted object. We finally combine the synthesized view segments
and blend the objects into the target stereo 360° scene. A user study demonstrates that our method can provide good depth perception
and removes ghost artifacts. The per-view solution is a potential paradigm for other content manipulation methods for 360° images and
videos.

Index Terms—Stereoscopic Panoramic Image, Image Composition, Image Synthesis, Virtual Reality
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1 INTRODUCTION

ADVANCES in virtual reality (VR) and digital media technol-
ogy have allowed people to virtually teleport to a virtual

environment. This immersive experience provides tremendous
opportunities in entertainment, education, and enriched experiences
not directly accessible owing to safety or cost [22]. An economical
way to construct such a virtual scene is to capture omnidirectional
stereo images or videos from the real world. Therefore, there
have been emerging research interests in 360° image and video
processing for better immersive experiences in VR applications.
But the question of how to manipulate the content of 360° stereo
images remains less investigated. As a fundamental task in content
manipulation, seamless image composition and cloning have been
well-studied in the computer graphics and vision communities,
especially for 2D images and videos [11], [15], [29], [48]. However,
as demonstrated in the most recent 360° image/video processing
work, such as stabilization [43], depth estimation [49], optical
flow estimation [25], and edit propagation [59], [60], the methods
designed for normal 2D images cannot be easily extended to work
for 360° images, because of their incorrect spatial relationship
measurement in the spherical domain.

Besides the typical problems that any image composition
method has to cope with, such as gradient mismatch and complex
object boundaries, there is an additional challenge with 360° stereo
images: the consistency of the depth perception when the user
is focusing on any part of the composited result. That issue can
be neglected in planar stereo image composition [44] where a
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pair of camera positions are defined to look at the scene center,
since the field-of-view (FoV) is limited in 2D images. However,
360° stereo images allow users to rotate their view directions to
focus on an arbitrary region of the scene. The 360° images/videos
are pre-loaded for the left and right eyes and played by directly
projecting the left/right panorama to the left/right viewport for
efficiency. If the stereo composition is only conducted as a one-
off operation for a predefined user position, i.e., directly pasting
the source regions from the left-view and right-view to the stereo
equirectangular images for the final result, the perceived depths
will not be correct unless the user’s view direction is the same as
the predefined cameras. Fig. 1 demonstrates the issue: When a user
rotates their head with a VR headset, the depths of scene points
vary, so the fixed disparity of a stereo pixel pair generated by the
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Fig. 1: The camera positions when watching stereo panoramas
in a VR headset. P is a scene point, O is the virtual position
of the user. When the user rotates their head (right), the two
cameras are actually rotated about O, not their own centers, making
the disparity (x1

L − x1
R) different from (x2

L − x2
R). This means that

an image captured with this camera model has depth errors and
ghosting when viewed from any rotated position.
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one-off composition can never satisfy all possible view directions.
In this paper, we propose a novel method to insert stereo objects

into a target 360° stereo image with a convincing appearance and
well-preserved depth information when viewers change their view-
ing orientation. Our method uses the estimated depth information
of both source and target stereo images to guide the generation of
the stereo pair of inserted objects, ensuring the correct geometry
when watching the object inserted at an arbitrary 3D position.
For addressing the aforementioned depth inconsistency issue, we
propose a solution where the generated disparities of stereo pixel
pairs can fit different view directions of the virtual view pair.
Instead of using a single pair of camera positions when generating
the left and right panoramas, our camera model uses multiple pairs
of camera positions facing in different directions. For different
parts of the object, we separately generate the stereo content using
the pairs of cameras looking in each direction and then combine
the content of all the parts in the final left/right panoramas. More
particularly, we build a deep neural network to learn to generate
dense depth maps and object masks to produce high-quality stereo
content when the object pose changes in the composited results,
outperforming all the previous stereo image composition methods.
In our user study, we find that our method offers the best depth
perception, especially when the inserted object covers a large FoV
in the final result.

Our contributions are as follows:

• An omnidirectional stereo image composition algorithm,
which can composite a stereo object into a 360° panoramic
background for VR applications. Our method has good
fidelity, ensuring the fundamental 3D geometries of the
inserted objects by guiding the content manipulation in 3D
space.

• A novel solution to address the depth perception issue in
stereo panorama content generation. We use a camera model
that is more suitable to the geometry of stereo panoramas
than a model that assumes projection onto a single plane.

• A deep model that is able to synthesize dense and accurate
depth maps and object masks to facilitate stereo image
generation for different object poses.

2 RELATED WORK

Our work involves efficient compositing of 3D objects into
stereoscopic 360° panoramas. We briefly cover the key related
work in image manipulation, 360° image processing, stereoscopic
editing, and 3D object manipulation.

2.1 Image Matting, Composition, and Segmentation
Image composition is a basic operation for content manipulation,
used initially for film and video production [18]. Early methods
focused on providing intelligent scissors for object segmentation
to composite [36], [37]. In recent decades, alpha matting [48]
and gradient-domain methods [38] have become mainstream
approaches for composition. Matting allows us to extract accurate
boundaries with transparency values of foreground pixels for
realistic object insertion [8], [39]. Gradient-domain methods,
such as Poisson Blending [38], help find a smooth transition
between the background and the inserted foreground. Previous
work also focused on various aspects of image blending, such as
the environment lighting effects [46], [51], [62]. More recently,
deep learning-based approaches have been proposed to increase

the accuracy of the extracted soft masks of alpha matting [11],
[13], [55] or improve the visual consistency between composited
foreground and the target background [9], [24], [52]. The above
methods handle 2D planar images very well. But they are not able
to generate satisfactory results with stereo 360° images since an
appropriate depth perception cannot be guaranteed.

2.2 360° Image Analysis and Processing
A great deal of recent work has attempted to understand and
process 360° images and videos for better immersive experiences
in VR applications. To provide better 3D information for mixed
reality applications based on 360° videos, Feng et al. [16], [17]
and Wang et al. [49] proposed deep depth estimation networks
working on the spherical domain and built large panorama datasets
for training their models. Deep learning techniques have also been
used effectively for the semantic understanding of 360° images,
including saliency detection [30], object recognition [41], and
indoor holistic scene understanding [42]. Li et al. [23] developed a
method of lighting and geometry estimation from 360 panoramic
stereos. In the work of Li et al. [25], the dense correspondence
estimation for 360° videos is improved by fusing the information
of different sphere-to-plane projections. Although these techniques
are capable of processing spherical 360° images properly, they are
not able to be directly applied in stereo 360° image generation.
Some researchers focus on omnidirectional view-synthesis from
360° image sequences to provide 6-DOF immersive experiences by
explicitly [6] or implicitly [2] reconstructing 3D geometry. Zhao
et al. [61] and Xu et al. [54] proposed to use convolutional neural
networks to predict 360° HDR images for a better illumination
effect when inserting virtual objects into a target scene. But they are
not designed for manipulating stereo image content. To improve the
interactive experiences, researchers presented methods for allowing
a better user simulation [32] and adding social features to the VR
video player [26], [33]. We focus on providing richer experiences
by allowing the user to modify scene content.

2.3 Stereoscopic Image Editing
Stereoscopic image editing has attracted much research in the
past decade, initially prompted by the needs of stereoscopic
3D film production [34]. Wang et al. [50] investigated a novel
workflow called StereoBrush for users to convert a 2D stereoscopic
image to 3D instantly by drawing strokes on the 2D image. Other
research focuses on stereoscopic editing for stereo visual comfort
by applying the mesh-based image warping manipulation methods
to adjust the image structure. Tong et al. [44] proposed a novel
system named StereoPasting, inspired by StereoBrush. It solves
the stereoscopic composition task using an energy minimization
warping formula. Users get instant feedback while painting strokes
on the 2D foregrounds. Luo et al. [29] developed an algorithm for
seamless stereoscopic image cloning, which manipulates on both
color appearance and perceived depth. It estimates the disparity in
the gradient domain to make the disparities of the cloning region
continuous at the boundary, and also adjusts the shape and size
of the cloning area by applying a perspective-aware warping with
the constructed mesh based on the estimated disparity. Du et al.
[14] introduced a 2D warping method for adjusting stereoscopic
imagery, enabling users to perceive stereopsis in a new view. They
use feature correspondences and straight-line constraints to guide
the warping process, treating it as a quadratic energy minimization
problem. However, these previous methods (StereoPasting, Luo et
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Fig. 2: The pipeline of our method. Given a stereo object, our approach manipulates the image content with guidance from 3D space to
avoid distance metric issues when compositing the object into the target omnidirectional stereo background images.

al., Du et al.) are not plausible to deal with large perspective
differences or occlusion between foreground and background
because the generated disparities between corresponding pixel
pairs can be significantly distorted. Furthermore, methods relying
on mesh-based warping are unable to generate new image data that
is required to fit the new perspective, if it was not present in the
original input. They are also incapable of hiding information that is
occluded under the new perspective because the region that should
be occluded can only be narrowed down in the results.

Other research in stereoscopic image processing focuses on
how to estimate accurate disparity/depth maps [3]. Recent advances
in stereo depth estimation consist of deploying deep networks
embedding all steps of traditional pipelines and combining effective
learning modules [27], [45]. The estimated stereoscopic correspon-
dences are used to conduct view-consistent image enhancement
operations via deep networks, such as neural style transfer [5]. Due
to the special distortions of 360° stereo images, deep networks
that are delicately designed for estimating depth maps for stereo
panoramic images were developed by Wang et al. [49], which
assume vertical parallax between two views. Here, we use the depth
information of the target scene and the geometric structure of the
foreground object to allow the elements to be composited naturally
while keeping a correct sense of occlusion and perspective.

2.4 Object Manipulation in 3D Space

Our work is also related to object modelling and editing methods in
3D for 2D images. Previous work that focused on editing a target
object in 3D space needs either to reconstruct its basic geometry
structure [7] or to use point clouds [31]. Van der Heuvel [47] and
Criminisi et al. [10] introduced techniques of 3D reconstruction
from single images, particularly for artificial objects that usually
contain substantial prior geometric knowledge. Images of humans,
which lack this geometry, do however contain prior structural
knowledge that can be used to reconstruct free-form and texture-
mapped models [58]. The reconstruction and manipulation of
human models have been significantly advanced by neural network-
based technologies [1], [40], where the geometry information is
implicitly predicted and interpreted. To improve the fidelity of
object insertion in a VR environment, Morioka et al. [35] proposed
a method to let the inserted 3D object reflect the real-time lighting
changes of the scene.

We choose to use point clouds to model the 3D foreground
object because we can obtain depth information from stereo images
of the object. The point clouds in 3D space enable flexibility when
users edit the orientation or scale of the inserted objects without
altering the underlying geometry structure. Furthermore, these 3D

points are used to guide the warping and interpolation to generate
the composited regions in the target equirectangular stereo pair.
However, none of the above methods consider the depth consistency
issue when the scene is presented as a 360° stereo image. In this
paper, we propose a paradigm that can produce correct depth
perception from an arbitrary view direction in a manipulated 360°
stereo image.

3 OVERVIEW

Fig. 2 shows the pipeline of our method for compositing a stereo
object into a target omnidirectional stereo background image.
There are two key points in our method. First, we transform
the common 2D image to 3D space, using an estimated depth
map. After manipulating the image content with guidance, we
further project the 3D coordinates to their spherical positions on
the omnidirectional stereo (ODS) images to avoid the inconsistency
distance metric issue in different image domains, as noted by
Zhang et al. [59]. Second and more importantly, we apply per-
view projection from 3D space to ensure appropriate disparities for
different parts of the object. The 3D point clouds of the input stereo
object and the target scene are reconstructed from the estimated
disparities. According to the desired position and size of the inserted
object, we transform the 3D points to a spherical coordinate system
(θ ,φ ,ρ) with the user’s virtual position as its origin, and segment
the point clouds into multiple regions based on the horizontal
angle θ . To generate proper depth perceptions for an arbitrary
view direction, we build separate virtual camera pairs focused on
each region, and apply per-view projections to obtain the initial
sparse depth maps on the planar image domain. In our experiment,
we find that denser segmentation always leads to higher visual
quality. Therefore, we normally choose the smallest interval we
can achieve to segment the 3D point cloud, which is the viewing
angle covered by one column of the target equirectangular image.
We then employ a deep depth densification model to estimate
the dense depth maps and their alpha maps for all the view
directions. The left and right color images are then generated
with the guidance of the depth maps. For each view segment, we
find the stereo equirectangular pixels within the segment’s FoV
and overwrite them with the corresponding pixels in the generated
planar image pair for that view. Our proposed system also offers
more possibilities for addressing the occlusion problem that arises
when inserting a source object into a background scene, an area
that has been less explored in previous work on stereo planar image
composition with depth information. Properly handling occlusion is
crucial for achieving natural depth perception in the final composite,
as it eliminates any depth conflicts between the inserted object
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Fig. 3: Per-view image generation. (a) Spherical coordinate representation. (b) Per-view projection. (c) The stereo pair is generated with
guidance from the densified depth maps for each view segment.

and the original panorama. However, creating a 3D scene from
a panoramic image remains a challenging task due to the fact
that depth information can only be obtained from the front view.
Furthermore, current methods for 360° monocular depth estimation
are inadequate in producing accurate real-world predictions because
of the significant noise present in the input data.

4 ALGORITHM

The inputs of the method are a pair of stereo images of the object
to be inserted, with a masked region-of-interest (RoI), and a
stereo panoramic image pair as the target scene. The output is
the composited image pair with correct depth perception of the
inserted object for arbitrary view directions. The critical challenge
is to find a proper binocular camera model to project inserted
objects to target panoramic images while preserving correct depth
perception. Another challenge lies in the generation of a complete
and smooth depth map especially when the desired inserted 3D
position is different from the original source position.

4.1 Sparse 3D Reconstruction

We first estimate the depth map of the foreground object and the
region around the desired position of the target scene. For inserting
the object into the stereo panoramic target scene represented by
equirectangular projection, the user is required to specify the
position and the size of the object. We project the RoI of the
target scene to a planar image with a default FoV of 60° If the
source object is in a stereo panorama as well, we use an FoV of
no less than 60° to cover the horizontal angle extent of the object
when projecting the object into a planar stereo crop. We apply Li et
al’s sequence-to-sequence correspondence perspective deep model,
named the STereo TRansformer (STTR), to estimate the disparity
map from the stereo pairs [27].

Using the predicted horizontal disparities between the input
rectilinear stereo image pair, we can generate a depth map of the
foreground objects based on camera parameters. Assuming the
focal length is f and the baseline between the left and right camera
is B, the depth values z for the pixels can be calculated from its
estimated disparity d: z = ( f ×B)/d.

Given a pixel (px, py) on the left-view image with a size of
(W,H), we assumed a standard camera model located at the origin

looking down the z-axis. The 3D coordinates of this point in the
world coordinate system are obtained by:

(x,y,z) =
(
(px −W/2)× z

f
,
(py −H/2)× z

f
,z
)
, (1)

In the recovered sparse point cloud from the stereo pixels, we select
the center point of the cloud as the object’s reference point to place
in the target scene and about which to make any transformations,
such as scaling and rotation. It also helps the user to correctly
position the object in the target scene. Fig. 3 shows an example of
a recovered 3D point cloud.

4.2 View Segmentation and Projection
Having determined the transformations needed to meet the user’s
desires, including the size, orientation and position of the object,
we obtain the 3D point cloud for the object that is to be inserted
in the target scene. In order to tackle the challenge of varying
depth perceptions, we partition the point cloud into distinct
segments based on the respective viewing directions relative to the
user’s position. As shown in Fig. 3(a), we first transform world
coordinates to a spherical coordinate representation by:

θ = arctan
(

x
z

)
φ = arctan

(
y

2√x2 + z2

)
, ρ = 2

√
x2 + y2 + z2

(2)
Then we segment the point cloud according to the points’ θ -values:
we split the range of θ into N intervals, i.e., each interval covers
a range of 2π

N , and segment the points of the object based on the
horizontal angle intervals in which they fall. In our experiments,
we found that some segments might only contain too few points
when the user-specified pose is largely different with the original
pose, because the point cloud was recovered from the view of the
original stereo image. Therefore, we produce a dense depth map
for the desired pose and scale of the target object using the deep
depth densification network proposed later in Sec. 4.3, and then
perform view segmentation on the point cloud generated using the
dense depth map.

Per-view Projection In this step, we treat each segment of the
point cloud with a virtual camera pair that focuses on the individual
segment’s center. We generate a series of per-view projected point
clouds, each in their specific camera space (Fig. 3(b)). The position
and orientation of the user’s binocular views are defined as follows.
The virtual viewing camera pairs are located on the xz-plane of
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Fig. 4: The architecture of the deep depth densification network. We predict a dense depth map for the desired perspective and a soft
mask that indicates the pixel’s transparency and whether the pixel is solid.

the world coordinate system, with up-vector along the positive
y-axis. The initial position of the two cameras, C0

L and C0
R are

located on opposite sides of the origin on the x-axis with a distance
B between the two cameras, which are at C0

L = [−B/2,0,0] and
C0

R = [B/2,0,0], respectively. This initial pair’s viewing directions
are parallel to the positive z-axis. Given N intervals, the system
calculates the viewing direction θi for the ith interval as:

θi = 2πi/N −π (3)

Then, the rotation matrix Ri for a such interval is computed based
on the viewing direction, which is a rotation about y-axis by an
angle θi. We can define the desired position of Ci

L and Ci
R with

associated viewing direction as:

Ci
L = RiC0

L, Ci
R = RiC0

R (4)

The projected 3D point cloud in the world coordinate system pw
will be further transferred to each segment space for both views,
Qi

L and Qi
R with the specific camera matrix are expressed as:

Qi
L = [Ri|Ci

L]pw = Pi
L pw, Qi

R = [Ri|Ci
R]pw = Pi

R pw (5)

Using the known intrinsic matrix of both cameras for a specific
segment, we then project the point clouds to 2D depth maps. The
projected depth maps usually contain holes and gaps when the
relative pose of the object to the camera changes. The following
steps (see below) thus estimate a dense depth map to guide the
generation of stereo RGB images for that view direction. Here,
instead of just generating a depth map for the corresponding
segment, we also generate sparse depths for the neighbouring
regions in a certain field-of-view to facilitate the following dense
depth map generation for each view.

4.3 Per-view Depth Generation
To ensure the perceived depths are correct when users are looking at
different parts of the composited object, we propose to generate the
dense depth maps and corresponding stereo RGB images based on
the projected point clouds for each view direction separately. The
stereo images for each view direction will be combined together to
generate the final left and right panoramas.

Given that the desired pose of an object can vary considerably
away from the captured pose, the projected depth maps can be
very sparse for some view directions of the stereo camera pairs.
We initially attempted to directly fill the missing 2D pixels on
the depth map by morphological interpolation-based methods as
described in [21]. However, an interpolation-based method works
only when the pose changes are subtle so that the missing points
can easily find valid depth values in their neighbourhoods. If the
object has a relatively large scaling and rotation, the valid points
are too sparse to provide sufficient reference values for the missing

pixels to interpolate. Moreover, since we need to generate dense
depth maps for each view, the long running time of morphological
interpolation has a large negative impact on efficiency. Thus, we
propose a deep depth densification network (DDDN) to solve the
above issues when generating new depth maps. We show that our
network generates dense depth maps efficiently with higher visual
quality, especially for objects with sharp geometry features. To
avoid the distortion in the equirectangular representation affecting
the learning process, our deep model works in the 2D rectilinear
image domain.

Architecture We build a convolutional generative network that
takes a projected sparse depth map as input and predicts dense
valid depths and transparencies for the target object. As shown
in Fig. 4, a 2D sparse depth map goes through a U-Net-like
architecture to produce a densified depth map. More specifically,
we employ the following two learning schemes to improve the
quality of generated depth maps: First, we explicitly predict a mask
that indicates whether a pixel belongs to the target object in the
final image, helping the network to learn whether a pixel should
have a valid depth value. Second, we let the decoder learn from
multi-scale masks to have a better capability of reconstructing
the object’s geometry structure. For each scale level, we use a
separate convolutional layer, upsampling operation, and sigmoid
function to predict the masks at different scales, which are then
fused by a concatenation operation at the end with some higher-
scale contextual information. Finally, the output mask and depth
map are fused with a concatenation operation, followed by a 1 x
1 convolutional layer and a sigmoid function to generate the final
predicted result.

In our experiment, the above schemes are shown to be effective,
especially for improving the depth map quality for those regions
with large sparsity.

Dataset We train and evaluate the above network using both
synthetic and real-world datasets. We build a synthetic dataset with
ground truth depth maps of rendered objects. We use Unity3D to
render RGB images and their associated dense depth maps with
different positions, scales, and orientations. We select 30 classes
of 3D shapes in the ShapeNet dataset [4], covering a variety of
categories of furniture, vehicle, housewares, and buildings. In each
class, we randomly select 50 objects. For each object, we render 20
different poses, producing 20 dense depth maps, {Dk}, and their
corresponding masks, {Mk}. The original pose for each object is
chosen as its reference pose and a point cloud P0 is reconstructed
from its depth map D0. The transformations, between the other
poses and the reference pose are then applied on P0 to generate
the sparse depth maps, {D̂k}. We use the sparse depth map, D̂k, to
simulate the input data for the real-world use case, where the sparse
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Fig. 5: The input sparse depth map (first column). The predicted
dense depth maps (third column) by our network and synthesized
dense RGB images (fourth column) with the guidance of the depth
maps. The projected 3D points of the transformed source objects
are shown in the second column.

depth map can be generated by transforming the reconstructed point
clouds from the original stereo object to the desired 3D orientation
and position. The corresponding dense map, Dk, and mask, Mk,
can be used to supervise the learning process.

Our real-world dataset is drawn from the HRWSI dataset [53].
Our subset covers 15 different labels including living and non-
living objects, such as humans, birds, buildings, and chairs, among
others. To ensure the quality when generalizing to real-world data,
we select 67 main objects that are completely captured within the
images. For each of these objects, we construct the point cloud P0
first from its original depth map D0. We then produce 60 sparse
depth maps {D̂k} with corresponding camera pose (rotation R and
translation T ) {RT

k } and original point cloud P0 in 30 different
stereo camera-viewed poses. As we lack the ground truth dense
depth maps for the transformed sparse depth maps, we adopt a
self-supervised approach for generalizing to real-world images.
We leverage the corresponding original view of each object as its
reference view D0, along with the predicted dense depth maps
Fd(D̂k) and the inverse camera pose (RT

k )
−1 to enable us to carry

out the self-supervised process effectively.

Training Procedure The neural networks are trained to fill the
gaps and missing points while preserving the important geometry
structures for a sparse depth map. We use the following losses in
the training procedure:
(1) The reconstruction loss, Lr, an L2 loss applied on the predicted
depth map with the ground truth mask, defined as:

Lr =
K

∑
k=1

|Dk −Fd(D̂k) ·Mk|2 (6)

where Fd(D̂k) represents the predicted dense depth map from the
sparse map D̂k and Mk is the ground truth mask
(2) The mask loss, Lm. The network generates masks of different
scales, which help it to better learn the global structure of the shape.
Lm is the loss of these smaller, subsidiary output masks, which is
defined as:

Lm =
K

∑
k=1

L

∑
l=0

|Ml
k −Fl

m(D̂k)| (7)

where Ml
k is the ground truth mask for the scale l and Fl

m(D̂k) is
the predicted mask for scale l.

(3) The perceptual loss, Lp, applied on the depth map to produce
better details. This makes the overall loss:

L = λrLr +λmLm +λpLp (8)

By default, we set λr = 0.4, λm = 0.6, and λp = 1.0 as the weights
for different terms. We split our synthetic datasets into a training
set of 19950 images and a test set of 9000 images. We train our
network by 100 epochs or make an early stop when the losses on
the validation data stop declining.

For the self-supervised real-world generalization procedure,
we first transfer the predicted masked depth map along with the
corresponding inverse camera pose back to their depth maps in
the original pose. Then, we apply the following losses on the
transferred depth map Fd(D̂k)

′ and its corresponding transferred
mask Fm(D̂k)

′.
(4) The BerHu loss, Lb, applied on Fd(D̂k)

′ for optimizing depth
predictions from the original depth map D0 with the corresponding
transferred mask:

Lb =

{
|Fd(D̂k)

′ −D0 ·Fm(D̂k)
′| |Fd(D̂k)

′ −D0 ·Fm(D̂k)
′| ≤C,

(Fd(D̂k)
′−D0·Fm(D̂k)

′
)2+C2

2C |Fd(D̂k)
′ −D0 ·Fm(D̂k)

′|>C,
(9a)

C = 0.2max(|Fd(D̂k)
′ −D0 ·Fm(D̂k)

′|) (9b)

(5) The BCEWithLogits loss, Lbce, applied on the predicted
transformed mask with its masked original’s mask.This makes the
overall loss:

L = Lb +Lbce (10)

We split our real-world datasets into a training set of 4020 images
and a test set of 1206 images. We do the real-world generalization
on our network and apply an early stop when the losses on the
validation data stop declining.

We show some results of our method in Fig. 5 and compare
our method with some alternatives in Fig. 6. These demonstrate
that it is hard for interpolation-based methods to properly fill the
missing pixels in the boundary parts since the transformed points
can be very sparse in the projected depth map and cannot form any
continuous line structures to wrap up the object. The use of the
mask losses avoids the depth value “leaking” to pixels that should
be outside of the object’s contours and also makes the network
more confident when estimating the depth values for pixels with
strong geometry features. In Fig. 7 and Tab. 1, we compare the
performance of our approach with and without the real-world
generalization scheme, which has been incorporated to enable
better generalization between synthesized and real-world data. This
integration has led to a significant reduction in the amount of noise
present in the generated depth maps.

Using such a network, we are able to rapidly produce all the
dense depth maps where the camera pairs are focused on the centers
of different 3D point segments.

4.4 Final Stereo Panorama Generation
Given the dense depth map for each view direction, we re-project
each pixel to the original input stereo image to obtain its color
value. In the original image, the system applies alpha matting
[19] to generate soft edges for composition. To ensure a seamless
composition, we also create an associated alpha mask by copying
the alpha value of each referred original pixel. For the N segments
of the point cloud, we thus obtain N stereo image pairs {Ir

n, I
l
n}(n =
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[Yu et al. 2021]

Original Object
& Transformed
Depth Map

[Ku et al. 2018]

Our Result

Fig. 6: Comparison on depth densification. We show the source objects and their sparse depth maps after 3D transformation in the top
row and the generated depth maps by PointTr [57] (Row 2), depth map completion method of [21] (Row 3), and our depth densification
network (Row 4).

Original Final Result(a) Input (b) w/o Real-world 
Generalization

(c) w/ Real-world 
Generalization

(c) w/ Real world (b) w/o Real world 

Fig. 7: The input sparse depth map, and the comparison of the predicted results if the real-world generalization is applied. The red
rectangle region shows where real-world generalization makes a significant difference.

Method MAE RMSE SSIM PSNR
w/o Gen. 0.9317 5.3009 0.9150 35.6401
w/ Gen. 0.7837 4.0211 0.9174 39.4472

TABLE 1: Quantitative results on real-world datasets with two
methods: without and with real-world generalization.

1,2, ...,N) with their alpha masks. To accelerate the process, we
generate the depth map and stereo RGB images only in the involved
part of the object and its neighbouring region, since the other parts,
out of the specified view range, will not be used in the final result
generation. We did experiment with feeding the sparse depth map
of the entire object into the neural net, but found that this does
not produce better quality, but rather reduces the resolution of the
focused segment of the object in the resultant image.

We compose the synthesized left and right views of each
segment to the left and right views of the target panorama
respectively. For stereo panoramas captured by 360° cameras,
we obtain their depths using the 360° depth estimation method
proposed in [17] to align the 3D scenes of the target and the source

images. Then with the camera model introduced in Eq. 4, for
each pair of cameras (Ci

L,C
i
R), we use their view direction and the

interval θi to obtain the affected pixels in the left and right views
of the target panorama. Since the columns of an equirectangular
image are naturally the pixels of different horizontal viewing angles,
we just need to identify the affected columns and project those
spherical pixels to the 2D image plane of the synthesized image Ir

i
or Il

i to find the pixels to overwrite the original colors. The pixels’
alpha values will be used to ensure that only valid pixels will be
used and seamlessly blended. Finally, depending on whether the
inserted region contains background pixels surrounding the object
boundary, we optionally perform Poisson Blending [38] on the
synthesized regions in the left and interpolate the right view based
on the geometric information.

We find that a larger number of segments always means better
visual quality. Therefore, in our default settings, the viewing angle
intervals are decided by the horizontal resolution of our target
panoramic images and are normally set as the viewing angle
represented by a single column. For example, for a panorama with
a resolution of 3840×1920, we use N = 3840 and our interval is
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thus 360◦/3840 = 0.09◦. In our experiments, we found that the per-
column synthesis will not introduce artifacts regarding the spatial
continuity of the object’s appearance, because the changes between
neighbouring columns are subtle and neglectable. Finally, we can
compare the depth of the inserted object with that of the panorama
to determine the occlusion relationship for better composition.

5 EXPERIMENTS AND RESULTS

In this section, we evaluate the key parts of our system, demonstrate
our 360◦ stereo image compositing results, and compare them with
other stereo composition methods. We also conduct a user study to
evaluate the depth perception quality of the generated results.

5.1 Implementation

The source object can be from any kind of stereo images, such
as images captured by 2D/360° stereo cameras or rendered stereo
images, and single RGB-D images. Our system enables users to
interactively mark their objects of interest and obtain alpha masks
for them, and provides a “one-off” preview of the composition
results on the target scene, allowing users to view the changes
in real-time. Furthermore, the DDDN can be used to give users
greater flexibility in editing the desired pose of the inserted object,
such as orientation and scale. Once a dense depth map is obtained,
it can be projected into 3D space and aligned with the target
scene for per-view segmentation. The partitioned 3D points can
then be projected onto the 2D image domain using perspective
projection and densified using our proposed DDDN for each view.
Finally, the equirectangular projection is applied to project the
specific column on the predicted depth map and mask onto the
target column of the 360 images, which we refer to as “per-
column composition”. Furthermore, for cases where there is a
significant difference in pixel colors between the source object and
the target region, Poisson Blending, as outlined in [38], may be
optionally employed. While the left view can be generated using
the aforementioned procedure, the right view can be synthesized
by harnessing geometric information to obtain and interpolate
corresponding pixel colors, thereby ensuring consistency in color
and the underlying 3D geometry between both views.

For consumer-grade stereo cameras for which the intrinsic
parameters are available, we can directly use these to offer a
better sense of the real-world size of the operated objects. For
example, we used f = 700 and B = 0.12 for images captured by
a ZED camera. Otherwise, we set some constant values for f and
B for convenience and let the user adjust the object’s size for the
stereo data [53] collected from the internet. When refining the final
appearance, gradient-domain methods such as Poisson Editing are
provided as an optional operation for users.

When applying the per-column strategy on a single CPU core
of an Intel Xeon W-2133 with an RTX3090 GPU, the average
execution time of our Python implemented method is 45 seconds
for generating a composition result with a resolution of 3840×1920
target 360° image (N = 3840, 0.09° as the view interval and the
object covers an FoV of 90° ), including object segmentation, depth
estimation, point cloud processing, per-view projection and the
final combine steps. The number of depth maps and masks that
are produced is contingent on the number of columns (FoV) of the
inserted object that is compositing on the equirectangular image. If
a source object covers 90° of FoV in a 3840×1920 360° image,
there will be a total of 960 depth maps generated for different

camera views, in accordance with the original depth maps for each
view.

To minimize the computation time and ensure interactive per-
formance, we implement an alternative “key-column” strategy that
generates a smaller number of depth maps, each covering multiple
columns of pixels. We found that one depth map per 11 columns of
pixels works well without creating obvious discontinuities between
one set of columns and the next. In the example above, instead of
generating 960 dense depth maps using the “per-column” strategy,
the key-column strategy requires only 87 key columns for a 90-
degree FoV coverage, each key column’s depth map being used by
the 5 columns of pixels to its left and the 5 to its right. The key-
column strategy reduces the execution time to 9 seconds, effectively
reducing redundancy and computational costs, thereby making our
approach interactive.

5.2 Component Evaluation
5.2.1 Real-world Generalization
We use self-generated synthetic data to train our DDDN model for
dense depth map generation, as there are no existing datasets that
fully satisfied our requirements to the best of our knowledge. For
example, the 4D Light Field Dataset proposed by Honauer et. al
[20], while closely related to our problem, provides only a single
depth map for the default view location, despite having multiple
views of the same object.

It should be noted that, while synthetic data can be a useful
starting point for the depth completion task, the trained model
may not accurately capture the complexity and variability present
in real-world data, as illustrated in Fig. 7 (b). We incorporate
additional loss functions (Lb and Lbce) to optimize the predicted
depth map, accounting for the complexities and robustness required
for real-world data. These losses ensure that the predicted depth
map (masked) matches the default depth map after a corresponding
reverse transformation, facilitating consistent completion across
views while linking to the original input. By training with real-
world data, we have observed significant improvement, as shown
in Fig. 7 (c).

We assess the effectiveness of our approach using standard
metrics for depth map densification, including MAE, RMSE, SSIM,
and PSNR, on a real-world dataset, as described in Section 4.3.
Tab. 1 presents the quantitative results. The results demonstrate that
our DDDN model, with the inclusion of real-world generalization,
outperforms our original model in terms of these metrics. This
validates the robustness and effectiveness of our proposed approach
in real-world scenarios.

5.2.2 Comparing Rendering Methods
We compare three different rendering schemes for 360° stereo
image composition: per-column, key-column and one-off. The
one-off scheme is the baseline against which we compare our new
schemes (per-column and key-column). The one-off scheme is a 2D
stereo composition method that takes the stereo contents as input
and applies one-off object insertion operations on the left and right
views of the target image. This produces incorrect stereo disparities
over large parts of the 360° image. In contrast, our new schemes are
able to generate correct depth perception. A basic requirement for
a stereo image pair is that there should be only horizontal disparity
for each corresponding pixel pair when the viewer is looking at
that point, to fit the layout of human eyes. However, the stereo
360° images created using the one-off method provide roughly
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Method Per-column Key-column One-off
Disparity Difference 0.6544 0.7733 3.0327

TABLE 2: Quantitative results on corner points of a chess board
with different rendering methods: per-column, key-column (11
columns), and one-off.

accurate disparity results only for the area directly in front of the
capture cameras. Behind the cameras, the perspectives generated
are reversed, and to the left and right of the cameras, there is
vertical disparity. This is because the two cameras are placed at
fixed positions, spaced apart by the average distance between a
person’s eyes. Looking directly ahead, their separation is correct,
left–right. But at 90° to that direction, the relative positioning of the
two cameras is not left–right but instead front–back, resulting in a
scale change rather than a stereo disparity: this is incorrect, does not
provide correct stereo perception, and can result in eye strain, such
as Fig. 12. Indeed, the one-off method produces displacements
in all directions. The direction and magnitude of displacement
depends on the object’s distance from and angle to the pair of
cameras. To ascertain the scope of this problem and whether our
schemes resolve it, we conducted a quantitative analysis of the
disparities generated by the three schemes, comparing them against
the disparities present in the ground truth (GT) stereo 360° image
pair generated by Unity3D.

We use Unity3D to generate a chessboard that covers 119.25°
FoV in the final stereoscopic results with the correct depth adaption
across all the covered regions. Using such synthetic data, we are
able to avoid possible 3D reconstruction errors when working on
real-world data, so that the comparison can focus only on the
generated disparities. For the one-off scheme, we use only the
initial left and right camera positions described in Sec. 4.2 and
render two 360° images as the stereo pair. For our per-column
and key-column schemes, we segment the 3D scene as in Sec. 4.2
according to the view angle range covered by a number of columns
of the panorama and render the pixels within the view range using
the pair of cameras looking at that direction. Then the per-column
or key-column results are combined together to form the final
stereo panorama with depth-adapted left and right content.

Tab. 2 presents a quantitative analysis of the disparities
generated by the per-column, key-column (11 columns), and
one-off schemes. We compare the average Euclidean distance
between disparity vectors against the GT stereo 360° image pair
produced by Unity3D at the centered different positions (θ = 0◦,
φ =−70◦,−35◦,0◦,35◦,70◦). Our schemes achieves significantly
lower Euclidean distance differences than the one-off scheme
on the disparity vector between the left and right views of the
covered region, which shows the generalization ability of our
method when compositing to different regions on a sphere. It is
worth noting that the key-column scheme generates comparable
evaluation results to the per-column approach, while substantially
decreasing redundancy and computation time in comparison.

5.2.3 Deep Depth Densification
Our deep model for depth densification is built to generate a dense
depth map from a sparse projected point cloud. To demonstrate
the necessity of the dedicated deep network, we compare it with
two possible alternatives: depth map completion methods and point
cloud completion methods. Most depth map completion methods
are designed to improve the depth map quality of a given RGB-
D image. They need a complete RGB image to guide the depth

completion, which is not available in our task because the dense
RGB image for the desired pose is also missing. Thus, we choose
to compare with the method of [21] because it can perform depth
completion based on only an input sparse depth map.

Some results of the depth completion method proposed in [21]
are shown in the third row of Fig. 6. Due to the limitations of their
morphological operations when filling the missing pixels, their
method fails to maintain geometric details, e.g., the trees’ edges in
the first example in Fig. 6. Their method can also easily propagate
incorrect depth values to its neighbours, causing undesirable depth
effects like in the boundary regions of the second and fifth examples.
Finally, their method may generate incorrect object shapes as in
the third and fourth examples, because their method cannot predict
which positions have valid pixels of the foreground object. Our
deep depth densification method overcomes the above issues and
produces higher-quality depth maps. It should be also noted that
our method is 6 times faster than the method of [21].

In the comparison between point cloud completion and our deep
depth densification, we feed the transformed sparse point cloud to
one of the state-of-the-art deep point cloud completion methods,
PointTr [57] and project it to generate the depth map for the target
view. We found that the point cloud completion method focuses
more on the global 3D structure and the integrity of the model and
fails to generate sufficient depth details for a specific view. The
mandatory sampling step of their method is also a reason for the
failure of the dense depth map generation. It cannot guarantee that
all the geometric details of the depth map are preserved after the
sampling step. Some typical examples are shown in Fig. 6, where
our method generates depth maps with significantly better visual
quality than PointTr.

We also consider NeRF-based approaches to directly learn to
generate novel views. Unlike most NeRF-based approaches that
need a number of input views to reconstruct a neural radiance
field, PixelNeRF [56] and Depth-Supervised NeRf [12] only need
one or few input images to synthesize new images of novel
perspectives. However, PixelNeRF and DSNeRF algorithms face
challenges in generating high-quality textures from stereo pairs, as
the short stereo baseline typically leads to limited depth constraints
estimated through structure-from-motion. This limitation results in
unsatisfactory visual quality for composition tasks. Moreover, the
algorithms often recover incomplete point clouds, typically only
capturing the surface facing the camera, which further limits the
ability to generate clear and sharp textures.

5.3 Results

Some composition results of our approach are presented in Fig. 9.
For each example, the stereo panoramic scenes are shown at the
bottom using the equirectangular projection of its left view. The
inset windows demonstrate the segmented source objects and the
zoom-in windows visualize the composited stereo objects using
anaglyph images. We also include all the stereo 360° results in our
supplementary materials, which can be viewed with VR headsets
to achieve a better depth perception. From the results where we
change the objects’ orientation, size and position, we can see that
our method is suitable for processing panoramic images as it is able
to recover and manipulate the 3D geometry information to guide the
pixel generation. We naturally avoid the computation for adapting to
equirectangular distortions when pasting the object into an arbitrary
position. We also generate correct panoramic disparities using this
3D-guided approach. Fig. 8 shows a result where we achieve natural
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Fig. 8: Composition results by the proposed system. (a) Foreground
objects are rotated about the y-axis, and the red beanbag blocks the
corresponding region of the orange one. (b) Composited foreground
objects are occluded by the existing objects based on their depths.

composition results by considering the occlusion relationship with
the backgrounds. The occlusions between the composited objects
and the original object show the depth consistency achieved by
our method. In Fig. 9 (a) and (f), we apply Poisson Blending to
one view to achieve natural color matching with the target scene,
and then leverage geometric information to transfer and interpolate
corresponding pixel colors from one view to the other through the
image warping (point cloud-based) technique , thus ensuring color
and underlying 3D geometry consistency between both views. In
addition, our method has no restrictions on the size of the source
object or the FoV covered in the target scene, which is particularly
suitable for 360° image editing tasks. One reason is our proposed
work manipulates the point cloud in the 3D space and then projects
it to the target panoramic images. The other reason is that the target
panoramic (equirectangular) image already covers 360◦×180◦ of a
scene, so the target 360° images will always be able to incorporate
any size of composited object. Fig. 10 shows two such examples,
where our approach achieves correct disparities in the left and right
end of the composited objects.

5.4 Comparisons
Directly treating equirectangular images as normal 2D images
when applying the image cloning operation cannot generate correct
equirectangular distortion, which is important for maintaining the
inserted object’s shape when viewing it in a headset or a 360°
image player. Considering the incorrect equirectangular distortion
will also lead to problematic disparities when viewing the region of
interest of the result, we therefore do not make further comparisons
with the 2D planar image composition methods proposed for
monocular 2D images.

For objects that only cover a narrow FoV, an alternative method
to insert stereo objects to the target panoramic scene is to project
the relevant part of the panorama to a 2D image plane and to then
insert the object into the planar stereo image before projecting
back. The composition methods of Luo et al. [29] and Tong et

al. [44] are proposed for image cloning and composition in stereo
2D images. The latter method needs a substantial amount of user
interaction. Therefore, we choose to compare with the method of
Luo et al. that relies on mesh-based deformation to demonstrate
the effectiveness of our stereo content manipulation and generation
method. In Fig. 11, we show their composited stereo images and
the 2D result generated using our deep depth densification and
view-dependent content generation. Due to the limited capability
of the mesh-based deformation method on the perspective changes
of the object, our method can produce more realistic results when
the desired orientation and relative position of the target object is
notably different from the original capture.

Fig. 12 shows examples of both the one-off method and our
method. Viewing the anaglyph stereo images, it is clear that our
method produces only desirable horizontal disparities, while the
one-off method produces incorrect results that include undesirable
vertical disparities. We evaluate the perceived visual quality of the
two methods in our user study.

5.5 Alternatives and additions to the algorithm

Pixel color inpainting is a useful technique in composition. In
our case, it might lead to higher quality results, but it raises
additional research questions. We have not applied any pixel
inpainting technique onto our incomplete inserted objects because
our focus is primarily on maintaining the composited object’s
disparity consistency across all view directions in the 360° images.
If one did wish to apply inpainting, then a substantial unsolved
issue is how to handle the inconsistency in the occluded regions
for the left and right eyes. This inconsistency makes it crucial to
prioritize creating a consistent color pattern in each view during
any inpainting process. Any pattern mismatch between views could
negatively impact the correctness of the disparities. Rather than use
inpainting, we addressed the missing region color issue through our
point cloud-based image warping technique that uses the predicted
depth map to retrieve pixel color from corresponding positions.

We recognise that using the low-quality estimated depth map
and alpha mask as input can result in imperfect final composited
results. For example, if the depth estimation technique fails to
accurately estimate the depth of the object, the foreground object
might appear distorted or disconnected from its surroundings
especially when its orientation is changed. Similarly, if the alpha
matting process is not accurate, the edges of the foreground object
might appear jagged or rough, resulting in an unnatural-looking
composite image. To overcome these issues, we adopted one of
the state-of-the-art depth estimation techniques [27] which delivers
highly precise depth estimates for objects. Where this proves to
be insufficiently accurate, we can encourage users to use some
incorporated user interaction masking techniques to further improve
the accuracy of the input mask.

In addition, we noted that low-quality depth maps can lead to
floating points around the new shape after the object’s orientation
is changed. Our depth densification network denoises these floating
points, which provides more tolerance for low-quality depth maps.
We also include preprocessing techniques on the depth map that
reduce noise points in the input. These additions to the algorithm
enhance input accuracy so that our proposed system produces more
realistic and satisfactory outcomes.

Finally, an alternative approach would be to use 3D point
clouds rather than depth maps. However, we see several challenges
with this approach. For instance, if we segment views based
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Fig. 9: Results of the proposed method. We show the anaglyph images of the zoom-in windows of the composited objects and only
include the left view of the stereo panoramic composition results.

on the density of the point cloud, it could disrupt the disparity
coherence of the inserted object in the final ODS image because
the appropriate disparity for any given part of the inserted object
should be determined by the user’s viewing direction, rather than
by the density of the point cloud itself.

The task of completing the depth map itself could be addressed
by a point cloud upsampling technique. However, such upsampling
algorithms primarily aim to enhance the global 3D structure and
integrity of the inserted object. As an example, consider the method
of Liu et al. [28]. It takes a point cloud of 256, 1024, or 4096 points,
and densifies this by a factor of four, so a maximum of 16384 points.
On the other hand, our depth densification network has a 512×512
depth map as both input and output. This is a considerably higher
number of points than in the point cloud upsampling method. As a
result, a complete single view of the inserted object is sufficient for
us to reconstruct, and our approach can provide much finer details
at the local level.

5.6 User Study

We conduct a user study to validate our method subjectively. We
used ten panoramic images of different foreground objects. We
generated two results for each scene: one result where we directly
project all 3D points to the left and right equirectangular image
to guide the pixel generation with a fixed pair of cameras (one-
off) and the other result using our per-view projection, where we
choose the FoV of each column of a 3840×2160 panoramic image

as the interval of our view-segmentation, i.e., 0.09° There were
14 participants (six males, and eight females, aged from 25 to
52). After a short training session using two stereo scenes, the
participants were asked to watch the ten groups of two stereo
panoramas in Oculus Quest 2, and assess the two panoramas based
on the visual quality by giving a score from 1-bad to 5-good.
They were also asked to mark three positions where they found
the visual qualities were most different between the two shown
panoramas. Finally, they were asked to choose one of the two
compared panoramas that had better visual comfort. We presented
the foreground objects in front of a black background to avoid any
confounding factors from a textured or image-based background.

Fig. 13 and Tab. 3 report the user study results. The per-view
result achieves a much higher mean score than the one-off results
which may be attributable to no ghost artefacts being perceived by
participants, especially at the boundary or the regions with sharp
and clear structures. This is consistent with our intuition that using
a large number of segments with small intercepts can benefit the
capture of foregrounds by rendering all parts of the foreground
from appropriate eye positions. We performed a paired-sample t-
test between the scores of the results of the one-off method and our
approach. As shown in Tab. 3, the result indicates that the visual
quality of our method is significantly better than the one-off method
at a significant level α = 0.05. Most of the participants reported
that the regions far away from the composited object’s center
have noticeable quality differences. Depending on the textures and
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Fig. 10: Composition results with long objects inserted. Our method can allow arbitrary sizes of insertions covered in the target scene.

[Luo 2012] Our Result

Fig. 11: Comparing our method with the 2D stereoscopic image
composition method described in [29]. We inserted two rocks into
the target scene at different depths and heights. Note that our
method can adaptively adjust the 3D pose of the inserted object for
a more natural result.

Score Mean Std P-Value
One-off 2.807 0.847

5.607e-20
Per-column 3.714 0.742

TABLE 3: Statistics of the user study results. The paired-sample
t-tests are performed between the scores of the two methods.

colors, the participants might have a different level of sensibility to
such a difference, which causes a minor variance in the reported
positions. In terms of visual comfort preference, the preferred
method is our per-view approach in 85% of the responses. For
more information on the details and results of our user study please
refer to our supplementary document. The above user experiments
have been approved by the Human Ethics Committee of Victoria
University of Wellington (ID: 0000025362).

(a) One-off (b) Our result

(a)

(b)

Fig. 12: Rectilinear views of synthesized stereo objects. It can be
seen in the anaglyph images that the one-off method can not
guarantee the horizontal disparities required for correct depth
perception.

1        2        3        4        5

Responses
80

60

40

20

  0
7(5%)7

42(30%)7

65(46%)7

23(16%)7

3(2%)7

1        2        3        4        5

Responses
80

60

40

20

  0 0(0%)7
8(5.7%)

40(29%)7

76(54%)7

16(11%)7

(b) Visual Comfort (a) Visual Quality Score Distribution
Score Score

One-Off Per-View

One-Off

Per-View

Fig. 13: The user study results. (a) The visual quality score
distributions of the two methods (on scale of 1-5). (b) The visual
comfort preference.

Limitations and Future Work The proposed approach has three
limitations. First, if the depth estimation method fails to predict
an accurate depth map of the source stereo object, our image
generation method based on depth maps might not be able to
produce satisfactory results when the user wants to change the
object’s 3D pose due to the incorrect 3D-to-2D projection. Second,
our approach does not estimate the illumination of the target scene
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and the composited object. In future work, we will reconstruct the
lighting information and the 3D geometry of the target scene to
illuminate the object for better consistency. Finally, our current
system relies on the user’s input to decide the object’s 3D pose
and position. More advanced pose adjustment methods can be
potentially employed to create more realistic results.

6 CONCLUSION

The goal of this paper is to address stereo 360° image composition
with desired poses and positions of the inserted object, especially
when the user composites an object with desired pose and scale
that covers a large FoV into an ODS image. The goal has been
achieved by developing a novel composition algorithm that keeps
the basic 3D geometry of the composited object, while also
achieving a high-quality depth perception for an arbitrary view in
the panoramic scene. Particularly, a per-view projection method can
make the composited content adapt to different view directions. The
results show that the composited foregrounds can keep geometry
information when the perspective, position or size of the object
change. The user study demonstrates our method achieves the
highest quality of depth perception when we make the per-view
projection method with a fine segmentation.
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